首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central serotonin2C receptors (5-HT(2C)Rs) control the mesoaccumbens dopamine (DA) pathway. This control involves the constitutive activity (CA) of 5-HT(2C)Rs, and is thought to engage regionally distinct populations of 5-HT(2C)Rs, leading to opposite functional effects. Here, using in vivo microdialysis in halothane-anesthetized rats, we investigated the relative contribution of ventral tegmental area (VTA) and nucleus accumbens shell (NAc) 5-HT(2C)Rs in the phasic/tonic control of accumbal DA release, to specifically identify the nature (inhibition/excitation) of the control, and the role of the 5-HT(2C)R CA. Intra-VTA injections of the selective 5-HT(2C)R antagonists SB 242084 and/or SB 243213 (0.1-0.5 microg/0.2 microL) prevented the decrease in accumbal DA outflow induced by the 5-HT(2C)R agonist Ro 60-0175 (3 mg/kg, i.p), but did not affect the increase in DA outflow induced by the 5-HT(2C)R inverse agonist SB 206553 (5 mg/kg, i.p). Intra-NAc infusions of SB 242084 (0.1-1 microM) blocked Ro 60-0175- and SB 206553-induced changes of DA outflow. Intra-NAc, but not intra-VTA administration of SB 206553 increased basal DA outflow. These findings demonstrate that both VTA and NAc 5-HT(2C)Rs participate in the inhibitory control exerted by 5-HT(2C)Rs on accumbal DA release, and that the NAc shell may represent a primary action site for the CA of 5-HT(2C)Rs.  相似文献   

2.
The effect of omega (benzodiazepine)-receptor agonists, antagonists, and inverse agonists on the electrically evoked release of 5-[3H]hydroxytryptamine ([3H]5-HT) was studied in superfused slices of the rat frontal cerebral cortex. The electrically evoked release of [3H]5-HT was enhanced by nanomolar concentrations of diazepam and the selective omega 1-receptor agonists alpidem and CL 218872. The omega 1/omega 2- and omega 1-receptor antagonists flumazenil and CGS 8216, respectively, did not modify the electrically evoked release of [3H]5-HT. The omega 3-receptor agonist Ro 5-4864 and the omega 1-receptor inverse agonist ethyl-beta-carboline-3-carboxylate on their own did not affect the electrically evoked release of [3H]5-HT. On the other hand, the inverse agonist 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylic acid methyl ester (DMCM), at micromolar concentrations, inhibited both the spontaneous and the evoked release of [3H]5-HT. The facilitation of the electrically evoked release of [3H]5-HT by diazepam, alpidem, or CL 218872 was potentiated by gamma-aminobutyric acid (GABA). Exposure to flumazenil and CGS 8216 antagonized the facilitation by diazepam, alpidem, or CL 218872 of [3H]5-HT release. The inhibition of the release of [3H]5-HT by DMCM was not modified by exposure to either flumazenil, CGS 8216, or GABA. The inhibitory effect of DMCM was not observed when monoamine oxidase activity was inhibited by pargyline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The effect of the serotonergic receptor agonist 1-(m-trifluoromethylphenyl)piperazine (TFMPP) was studied on the K(+)-evoked [3H]acetylcholine [( 3H]ACh) release from guinea pig hippocampal synaptosomes loaded with [3H]choline. TFMPP (5-1,000 microM) inhibited the evoked ACh release in a dose-dependent manner (IC50 = 81.8 microM). The inhibitory effect of TFMPP was mimicked by CGS-12066B (10, 30, and 100 microM), a 5-hydroxytryptamine1B (5-HT1B)/5-HT1D receptor agonist; 1-(m-chlorophenyl)piperazine (100 microM), a 5-HT1C/5-HT1B receptor agonist; and 5-carboxamidotryptamine (10 microM), a nonselective 5-HT1 receptor agonist. 8-Hydroxy-2-(di-n-propylamino)tetralin (10 and 100 microM), a 5-HT1A receptor agonist, and quipazine (10 and 100 microM), a 5-HT2 receptor agonist, did not have any significant effect. Serotonergic antagonists, such as dihydroergotamine (0.1 and 1 microM), metergoline (0.1 microM), methysergide (0.5 and 1 microM), or yohimbine (1 and 10 microM), blocked the TFMPP effect dose-dependently. In contrast, methiotepine (0.3 and 1 microM), propranolol (1 microM), ketanserin (0.1 microM), mesulergine (0.1 microM), ICS 205930 (0.1 and 1 microM), and spiroperidol (1 and 7 microM) did not affect the TFMPP-induced inhibition of the evoked ACh release. These data suggest that, in guinea pig hippocampus, the K(+)-evoked ACh release is modulated by a 5-HT1 receptor distinct from the 5-HT1A, 5-HT1B, and 5-HT1C subtypes.  相似文献   

4.
In the rat brain, the presynaptic 5-hydroxytryptamine (5-HT) autoreceptors located on 5-HT terminals correspond to the 5-HT1B subtype. The presence of a 5-HT receptor probably located on 5-HT nerve endings and modulating transmitter release in the human neocortex has been reported, but its detailed pharmacological characterization is not yet available. On the other hand, receptor binding and autoradiographic results indicate that the 5-HT1B receptor subtype is not present in the human brain. We, therefore, studied the modulation of the electrically evoked release of [3H]5-HT by various 5-HT receptor agonists and antagonists in preloaded slices of human neocortex obtained from 18 patients undergoing neurosurgery. The nonselective 5-HT1A/1B/1D receptor agonist 5-carboxamidotryptamine produced a potent inhibition (70% at 0.03 microM) of the electrically evoked release of [3H]5-HT which was blocked by 5-HT receptor antagonists with the following relative order of potency: methiothepin greater than metergoline = methysergide greater than propranolol. The selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin at 0.1 microM did not modify the electrically evoked release of [3H]5-HT. The 5-HT1A/1B receptor agonist RU 24969 was 10 times more potent at inhibiting [3H]5-HT overflow in the rat frontal cortex than in the human neocortex. The potent 5-HT1B receptor antagonist cyanopinodolol did not modify the 5-carboxamidotryptamine-induced inhibition of the electrically evoked release of [3H]5-HT in slices of the human neocortex, but produced by itself a small inhibition of [3H]5-HT overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Atypical antipsychotic drugs (APDs), all of which are relatively more potent as serotonin (5-HT)(2A) than dopamine D(2) antagonists, may improve negative symptoms and cognitive dysfunction in schizophrenia, in part, via increasing cortical dopamine release. 5-HT(1A) agonism has been also suggested to contribute to the ability to increase cortical dopamine release. The present study tested the hypothesis that clozapine, olanzapine, risperidone, and perhaps other atypical APDs, increase dopamine release in rat medial prefrontal cortex (mPFC) via 5-HT(1A) receptor activation, as a result of the blockade of 5-HT(2A) and D(2) receptors. M100907 (0.1 mg/kg), a 5-HT(2A) antagonist, significantly increased the ability of both S:(-)-sulpiride (10 mg/kg), a D(2) antagonist devoid of 5-HT(1A) affinity, and R:(+)-8-OH-DPAT (0.05 mg/kg), a 5-HT(1A) agonist, to increase mPFC dopamine release. These effects of M100907 were abolished by WAY100635 (0.05 mg/kg), a 5-HT(1A) antagonist, which by itself has no effect on mPFC dopamine release. WAY100635 (0.2 mg/kg) also reversed the ability of clozapine (20 mg/kg), olanzapine (1 mg/kg), risperidone (1 mg/kg), and the R:(+)-8-OH-DPAT (0.2 mg/kg) to increase mPFC dopamine release. Clozapine is a direct acting 5-HT(1A) partial agonist, whereas olanzapine and risperidone are not. These results suggest that the atypical APDs via 5-HT(2A) and D(2) receptor blockade, regardless of intrinsic 5-HT(1A) affinity, may promote the ability of 5-HT(1A) receptor stimulation to increase mPFC DA release, and provide additional evidence that coadministration of 5-HT(2A) antagonists and typical APDs, which are D(2) antagonists, may facilitate 5-HT(1A) agonist activity.  相似文献   

6.
Synaptosomes prepared from freshly obtained human cerebral cortex and labeled with [3H]choline have been used to investigate the modulation of [3H]acetylcholine ([3H]ACh) release by 5-hydroxytryptamine (5-HT). The Ca(2+)-dependent release of [3H]-ACh occurring when synaptosomes were exposed in superfusion to 15 mM KCl was inhibited by 5-HT (0.01-1 microM) in a concentration-dependent manner. The effect of 5-HT was mimicked by 1-phenylbiguanide, a 5-HT3 receptor agonist, but not by 8-hydroxy-2-(di-n-propylamino)tetralin, a 5-HT1A receptor agonist. The 5-HT3 receptor antagonists tropisetron and ondansetron blocked the effect of 5-HT, whereas spiperone and ketanserin were ineffective. It is suggested that cholinergic axon terminals in the human cerebral cortex possess 5-HT receptors that mediate inhibition of ACh release and appear to belong to the 5-HT3 type.  相似文献   

7.
The main psychoactive component of marijuana, Delta9-tetrahydrocannabinol (THC), acts in the CNS via type 1 cannabinoid receptors (CB1Rs). The behavioral consequences of THC or synthetic CB1R agonists include suppression of motor activity. One explanation for movement suppression might be inhibition of striatal dopamine (DA) release by CB1Rs, which are densely localized in motor striatum; however, data from previous studies are inconclusive. Here we examined the effect of CB1R activation on locally evoked DA release monitored with carbon-fiber microelectrodes and fast-scan cyclic voltammetry in striatal slices. Consistent with previous reports, DA release evoked by a single stimulus pulse was unaffected by WIN55,212-2, a cannabinoid receptor agonist. However, when DA release was evoked by a train of stimuli, WIN55,212-2 caused a significant decrease in evoked extracellular DA concentration ([DA]o), implicating the involvement of local striatal circuitry, with similar suppression seen in guinea pig, rat, and mouse striatum. Pulse-train evoked [DA]o was not altered by either AM251, an inverse CB1R agonist, or VCHSR1, a neutral antagonist, indicating the absence of DA release regulation by endogenous cannabinoids with the stimulation protocol used. However, both CB1R antagonists prevented and reversed suppression of evoked [DA]o by WIN55,212-2. The effect of WIN55,212-2 was also prevented by picrotoxin, a GABAA receptor antagonist, and by catalase, a metabolizing enzyme for hydrogen peroxide (H2O2). Furthermore, blockade of ATP-sensitive K+ (KATP) channels by tolbutamide or glybenclamide prevented the effect of WIN55,212-2 on DA release. Together, these data indicate that suppression of DA release by CB1R activation within striatum occurs via a novel nonsynaptic mechanism that involves GABA release inhibition, increased generation of the diffusible messenger H2O2, and activation of KATP channels to inhibit DA release. In addition, the findings suggest a possible physiological substrate for the motor effects of cannabinoid agonist administration.  相似文献   

8.
In the present study we investigated whether serotonin release in the hippocampus is subject to regulation via cannabinoid receptors. Both rat and mouse hippocampal slices were preincubated with [3H]serotonin ([3H]5-HT) and superfused with medium containing serotonin reuptake inhibitor citalopram hydrobromide (300 nM). The cannabinoid receptor agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2, 1 microM) did not affect either the resting or the electrically evoked [3H]5-HT release. In the presence of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP-5, 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione-disodium (CNQX, 10 microM) the evoked [3H]5-HT release was decreased significantly. Similar findings were obtained when CNQX (10 microM) was applied alone with WIN55,212-2. This effect was abolished by the selective cannabinoid receptor subtype 1 (CB1) antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716, 1 microM) and 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide trifluoroacetate salt (AM251, 1 microM). Similarly to that observed in rats, WIN55,212-2 (1 microM) decreased the evoked [3H]5-HT efflux in wild-type mice (CB1+/+). The inhibitory effect of WIN55,212-2 (1 microM) was completely absent in hippocampal slices derived from mice genetically deficient in CB1 cannabinoid receptors (CB1-/-). Relatively selective degeneration of fine serotonergic axons by the neurotoxin parachloramphetamine (PCA) reduced significantly the tritium uptake and the evoked [3H]5-HT release. In addition, PCA, eliminated the effect of WIN55,212-2 (1 microM) on the stimulation-evoked [3H]5-HT efflux. In contrast to the PCA-treated animals, WIN55,212-2 (1 microM) reduced the [3H]5-HT efflux in the saline-treated group. Our data suggest that a subpopulation of non-synaptic serotonergic afferents express CB1 receptors and activation of these CB1 receptors leads to a decrease in 5-HT release.  相似文献   

9.
Lee HJ  Ban JY  Seong YH 《Life sciences》2005,78(3):294-300
The present study was performed to examine the neuroprotective effects of 5-hydroxytryptamine (5-HT)(3) receptor antagonists against hydrogen peroxide (H(2)O(2))-induced neurotoxicity using cultured rat cortical neurons. Pretreatment of 5-HT(3) receptor antagonists, tropanyl-3,5-dichlorobenzoate (MDL72222, 0.1 and 1 microM) and N-(1-azabicyclo[2.2.2.]oct-3-yl)-6-chloro-4-ethyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazine-8-carboxamide hydrochloride (Y25130, 0.5 and 5 microM), significantly inhibited the H(2)O(2) (100 microM)-induced neuronal cell death as assessed by a MTT assay and the number of apoptotic nuclei, evidenced by Hoechst 33342 staining. The protective effects of MDL72222 (1 microM) and Y25130 (5 microM) were completely blocked by the simultaneous treatment with 100 microM 1-phenylbiguanide, a 5-HT(3) receptor agonist, indicating that the protective effects of these compounds were due to 5-HT(3) receptor blockade. In addition, MDL72222 (1 microM) and Y25130 (5 microM) inhibited the H(2)O(2) (100 microM)-induced elevation of cytosolic Ca(2+) concentration ([Ca(2+)](c)) and glutamate release, generation of reactive oxygen species (ROS), and caspase-3 activity. These results suggest that the activation of the 5-HT(3) receptor may be partially involved in H(2)O(2)-induced neurotoxicity, by membrane depolarization for Ca(2+) influx. Therefore, the blockade of 5-HT(3) receptor with MDL72222 and Y25130 may ameliorate the H(2)O(2)-induced neurotoxicity by interfering with the increase of [Ca(2+)](c), and then by inhibiting glutamate release, generation of ROS and caspase-3 activity.  相似文献   

10.
A number of histamine receptor agonists and antagonists were utilized to study the effects of histamine on hepatocellular reduced glutathione (GSH) concentrations and the potential role of histamine as a mediator of morphine-induced hepatic GSH depression. Administration of histamine, the H1-histamine receptor agonist thiazolylethylamine, the H2-histamine receptor agonist impromidine, or the histamine-releasing substance compound 48/80 resulted in no significant change in hepatic GSH concentrations. The H1-histamine receptor antagonist chlorpheniramine and the H2-histamine receptor antagonist ranitidine were also without significant effect on hepatic GSH and did not antagonize morphine-induced GSH depression. These observations indicate that histamine release following morphine administration does not play a significant role in the subsequent depletion of hepatic GSH.  相似文献   

11.
In order to assess a role of 5-HT(1B) receptors for regulation of GABA transmission in the ventral tegmental area (VTA), VTA slices from the rat were incubated with [(3)H]GABA and beta-alanine, and superfused in the presence of nipecotic acid and aminooxyacetic acid. [(3)H]GABA release was induced by exposures to the medium containing 30 mM potassium for 2 min. The results showed that high potassium-evoked [(3)H]GABA release was sensitive to calcium withdrawal or blockade of sodium channels by tetrodotoxin, suggesting that tritium overflow induced by high potassium derived largely from neuronal stores. Administration of CP 93129 (0.15 and 0.45 microM), a 5-HT(1B) receptor agonist, or RU 24969 (0.15 and 0.45 microM), a 5-HT(1B/1A) receptor agonist, but not 8-OH-DPAT (0.45 microM), a 5-HT(1A) receptor agonist, inhibited high potassium-evoked [(3)H]GABA release in a concentration-related manner. The RU 24969-induced inhibition of [(3)H]GABA release was antagonized by either SB 216641, a 5-H(1B) receptor antagonist, or cyanopindolol, a 5-HT(1B/1A) receptor antagonist, but not by WAY 100635, a 5-HT(1A) receptor antagonist. Pre-treatment with SB 216641 also antagonized CP 93129-induced inhibition of [(3)H]GABA release. The results support the hypothesis that 5-HT(1B) receptors within the VTA can function as heteroreceptors to inhibit GABA release.  相似文献   

12.
Serotonin 2C receptors (5-HT(2C)Rs) expressed by pro-opiomelanocortin (POMC) neurons of hypothalamic arcuate nucleus regulate food intake, energy homeostasis and glucose metabolism. However, the cellular mechanisms underlying the effects of 5-HT to regulate POMC neuronal activity via 5-HT(2C)Rs have not yet been identified. In the present study, we found the putative transient receptor potential C (TRPC) channels mediate the activation of a subpopulation of POMC neurons by mCPP (a?5-HT(2C)R agonist). Interestingly, mCPP-activated POMC neurons were found to be a distinct population from those activated by leptin. Together, our data suggest that 5-HT(2C)R and leptin receptors are expressed by distinct subpopulations of arcuate POMC neurons and that both 5-HT and leptin exert their actions in POMC neurons via TRPC channels. VIDEO ABSTRACT:  相似文献   

13.
14.
Many modern models of receptor-G protein function assume that there is a direct relationship between high-affinity agonist binding and efficacy. The validity of this assumption has been recently questioned for the serotonin 5-HT2A receptor. We examined the intrinsic activities of various ligands in activating phosphoinositide hydrolysis and measured their respective binding affinities to the high- and low-affinity states of the 5-HT2C (VNV isoform) and 5-HT(2A) receptors. Ligand binding affinities for the high-affinity state of the receptors were determined using 1-(4-[125I]iodo-2,5-dimethoxyphenyl)2-aminopropane, whereas [3H]mesulergine and N-[3H]methylspiperone were used, in the presence of excess guanine nucleotide [guanosine 5'-O-(3-thiotriphosphate)], to define binding to the low-affinity state of the 5-HT2C and 5-HT2A receptors, respectively. Antagonists labeled the high- and low-affinity states of each receptor with comparable affinities. Previously identified inverse agonists of the 5-HT2C receptor behaved as silent antagonists in our systems even when the receptor was overexpressed at a relatively high density. In contrast, the ability of agonists to bind differentially to the high- and low-affinity states of the 5-HT2A and 5-HT2C receptors was highly correlated (r2 = 0.86 and 0.96, respectively) with their intrinsic activities. These data suggest that high-affinity agonist states can account for agonist efficacy at human 5-HT2A or 5-HT2C receptors without the need for considering additional transition or active states of the receptor-ligand complex. The procedure described herein may expedite drug discovery efforts by predicting intrinsic activities of ligands solely from ligand binding assays.  相似文献   

15.
The burden of type 2 diabetes and its associated premature morbidity and mortality is rapidly growing, and the need for novel efficacious treatments is pressing. We report here that serotonin 2C receptor (5-HT(2C)R) agonists, typically investigated for their anorectic properties, significantly improve glucose tolerance and reduce plasma insulin in murine models of obesity and type 2 diabetes. Importantly, 5-HT(2C)R agonist-induced improvements in glucose homeostasis occurred at concentrations of agonist that had no effect on ingestive behavior, energy expenditure, locomotor activity, body weight, or fat mass. We determined that this primary effect on glucose homeostasis requires downstream activation of melanocortin-4 receptors (MC4Rs), but not MC3Rs. These findings suggest that pharmacological targeting of 5-HT(2C)Rs may enhance glucose tolerance independently of alterations in body weight and that this may prove an effective and mechanistically novel strategy in the treatment of type 2 diabetes.  相似文献   

16.
Current receptor theory suggests that there is an equilibrium between the inactive (R) and active (R*) conformations of ligand-gated ion channels and G protein-coupled receptors. The actions of ligands in both receptor types could be appropriately explained by this two-state model. Ligands such as agonists and antagonists affect receptor function by stabilizing one or both conformations. The 5-HT3 receptor is a member of the Cys-loop ligand-gated ion channel superfamily participating in synaptic transmission. Here we show that co-expression of the 5-HT3A and 5-HT3B receptor subunits in the human embryonic kidney (HEK) 293 cells results in a receptor that displays a low level of constitutive (or agonist-independent) activity. Furthermore, we also demonstrate that the properties of ligands can be modified by receptor composition. Whereas the 5-hydroxytryptamine (5-HT) analog 5-methoxyindole is a partial agonist at the 5-HT3A receptor, it becomes a "protean agonist" (functioning as an agonist and an inverse agonist at the same receptor) at the 5-HT3AB receptor (after the Greek god Proteus, who was able to change his shape and appearance at will). In addition, the 5-HT analog 5-hydroxyindole is a positive allosteric modulator for the liganded active (AR*) conformation of the 5-HT3A and 5-HT3AB receptors and a negative allosteric modulator for the spontaneously active (R*) conformation of the 5-HT3AB receptor, suggesting that the spontaneously active (R*) and liganded active (AR*) conformations are differentially modulated by 5-hydroxyindole. Thus, the incorporation of the 5-HT3B subunit leads to spontaneous channel opening and altered ligand properties.  相似文献   

17.
Co-expression of guanine nucleotide-binding regulatory (G) protein-coupled receptors (GPCRs), such as the G(i/o)-coupled human 5-hydroxytryptamine receptor 1B (5-HT(1B)R), with the G(q/11)-coupled human histamine 1 receptor (H1R) results in an overall increase in agonist-independent signaling, which can be augmented by 5-HT(1B)R agonists and inhibited by a selective inverse 5-HT(1B)R agonist. Interestingly, inverse H1R agonists inhibit constitutively H1R-mediated as well as 5-HT(1B)R agonist-induced signaling in cells co-expressing both receptors. This phenomenon is not solely characteristic of 5-HT(1B)R; it is also evident with muscarinic M2 and adenosine A1 receptors and is mimicked by mastoparan-7, an activator of G(i/o) proteins, or by over-expression of Gbetagamma subunits. Likewise, expression of the G(q/11)-coupled human cytomegalovirus (HCMV)-encoded chemokine receptor US28 unmasks a functional coupling of G(i/o)-coupled CCR1 receptors that is mediated via the constitutive activity of receptor US28. Consequently, constitutively active G(q/11)-coupled receptors, such as the H1R and HCMV-encoded chemokine receptor US28, constitute a regulatory switch for signal transduction by G(i/o)-coupled receptors, which may have profound implications in understanding the role of both constitutive GPCR activity and GPCR cross-talk in physiology as well as in the observed pathophysiology upon HCMV infection.  相似文献   

18.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

19.
GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with 3H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 microM. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro.  相似文献   

20.
Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of (125)I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT(3)Rs) block the remaining 25%. (125)I-Epibatidine binds with a high affinity to native 5-HT(3)Rs of N1E-115 cells and to receptors composed of only 5-HT(3A) subunits expressed in HEK cells. In these cells, serotonin, the 5-HT(3)R-specific antagonist MDL72222, and the 5-HT(3)R agonist chlorophenylbiguanide readily competed with (125)I-epibatidine binding to 5-HT(3)Rs. Nicotine was a poor competitor for (125)I-epibatidine binding to 5-HT(3)Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of (125)I-epibatidine binding to 5-HT(3)Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT(3)Rs in neuroblastoma cell lines and 5-HT(3A)Rs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT(3)Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT(3)R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT(3)Rs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号