首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The conformational dynamism and aggregate state of small heat shock proteins (sHSPs) may be crucial for their functions in thermoprotection of plant cells from the detrimental effects of heat stress. Ectopic expression of single chain fragment variable (scFv) antibodies against cytosolic sHSPs was used as new tool to generate sHSP loss-of-function mutants by antibody-mediated prevention of the sHSP assembly in vivo . Anti-sHSP scFv antibodies transiently expressed in heat-stressed tobacco protoplasts were not only able to recognize the endogenous sHSPs but also prevented their assembly into heat stress granula (HSGs). Constitutive expression of the same scFv antibodies in transgenic plants did not alter their phenotype at normal growth temperatures, but their leaves turned yellow and died after prolonged stress at sublethal temperatures. Structural analysis revealed a regular cytosolic distribution of stress-induced sHSPs in mesophyll cells of stress-treated transgenic plants, whereas extensive formation of HSGs was observed in control cells. After prolonged stress at sublethal temperatures, mesophyll cells of transgenic plants suffered destruction of all cellular membranes and finally underwent cell death. In contrast, mesophyll cells of the stressed controls showed HSG disintegration accompanied by appearance of polysomes, dictyosomes and rough endoplasmic reticulum indicating normalization of cell functions. Apparently, the ability of sHSPs to assemble into HSGs as well as the HSG disintegration is a prerequisite for survival of plant cells under continuous stress conditions at sublethal temperatures.  相似文献   

3.
Induction of Benzoic Acid 2-Hydroxylase in Virus-Inoculated Tobacco   总被引:13,自引:6,他引:7       下载免费PDF全文
Salicylic acid (SA) plays an important role in the induction of plant resistance to pathogens. An accompanying article (N. Yalpani, J. Leon, M.A. Lawton, I. Raskin [1993] Plant Physiol 103: 315-321) shows that SA is synthesized via the decarboxylation of cinnamic acid to benzoic acid (BA), which is, in turn, hydroxylated to SA. Leaf extracts of tobacco (Nicotiana tabacum L. cv Xanthi-nc) catalyze the 2-hydroxylation of BA to SA. The monooxygenase catalyzing this reaction, benzoic acid 2-hydroxylase (BA2H), required NAD(P)H or reduced methyl viologen as an electron donor. BA2H activity was detected in healthy tobacco leaf extracts (1-2 nmol h-1 g-1 fresh weight) and was significantly increased upon inoculation with tobacco mosaic virus (TMV). This increase paralleled the levels of free SA in the leaves. Induction of BA2H activity was restricted to tissue expressing a hypersensitive response at 24[deg]C. TMV induction of BA2H activity and SA accumulation were inhibited when inoculated tobacco plants were incubated at 32[deg]C. However, when inoculated plants were incubated for 4 d at 32[deg]C and then transferred to 24[deg]C, they showed a 15-fold increase in BA2H activity and a 65-fold increase in free SA content compared with healthy plants incubated at 24[deg]C. Treatment of leaf tissue with the protein synthesis inhibitor cycloheximide blocked the induction of BA2H activity by TMV. The effect of TMV inoculation on BA2H could be duplicated by infiltrating leaf discs of healthy plants with BA. This response was observed even when applied levels of BA were much lower than the levels observed in vivo after virus inoculation. Feeding tobacco leaves with phenylalanine, cinnamic acid, or o-coumaric acid (putative precursors of SA) failed to trigger the induction of BA2H activity. BA2H appears to be a pathogen-inducible protein with an important regulatory role in SA accumulation during the development of induced resistance to TMV in tobacco.  相似文献   

4.
温度对中华稻蝗小分子热休克蛋白基因表达的影响   总被引:1,自引:0,他引:1  
【目的】小分子热休克蛋白(s HSPs)能够被环境胁迫所诱导,不同温度可诱导中华稻蝗体内sHSPs基因表达。【方法】本文采用实时荧光定量PCR(RT-q PCR)技术,分析不同温度处理后中华稻蝗Oxya chinensis体内6个Ocs HSPs基因的表达。【结果】结果表明,OcHSP19.1、OcHSP19.8、OcHSP20.4和OcHSP20.7基因的表达水平在27、32和37℃相同处理时间没有显著变化,但其表达量均在42℃显著升高,尤其是在42℃处理后2 h表达量升高明显。OcHSP21.1和OcHSP23.8基因的表达水平在不同温度处理后无显著变化。多因素方差分析结果表明,基因与处理温度间具有显著的交互作用。【结论】由此可见,温度能够对中华稻蝗s HSPs基因的表达产生影响,但是,不同温度处理下各基因的表达模式存在差异。  相似文献   

5.
Mammalian cell metabolism is responding to changes in temperature. Body temperature is regulated around 37 degrees C, but temperatures of exposed skin areas may vary between 20 degrees C and 40 degrees C for extended periods of time without apparent disturbance of adequate cellular functions. Cellular membrane functions are depending from temperatures but also from their lipid environment, which is a major component of membrane fluidity. Temperature-induced changes of membrane fluidity may be counterbalanced by adaptive modification of membrane lipids. Temperature-dependent changes of whole cell- and of purified membrane lipids and possible homeoviscous adaptation of membrane fluidity have been studied in human skin fibroblasts cultured at 30 degrees C, 37 degrees C, and 40 degrees C for ten days. Membrane anisotropy was measured by polarized fluorescence spectroscopy using TMA-DPH for superficial and DPH for deeper membrane layers. Human fibroblasts were able to adapt themselves to hypothermic temperatures (30 degrees C) by modifying the fluidity of the deeper apolar regions of the plasma membranes as reported by changes of fluorescence anisotropy due to appropriate changes of their plasma membrane lipid composition. This could not be shown for the whole cells. At 40 degrees C growth temperature, adaptive changes of the membrane lipid composition, except for some changes in fatty acid compositions, were not seen. Independent from the changes of the membrane lipid composition, the fluorescence anisotropy of the more superficial membrane layers (TMA-DPH) increased in cells growing at 30 degrees C and decreased in cells growing at 40 degrees C.  相似文献   

6.
7.
In a variety of cell types, insulin stimulation elicits the rapid production of H(2)O(2), which causes the oxidative inhibition of protein-tyrosine phosphatases and enhances the tyrosine phosphorylation of proteins in the early insulin action cascade (Mahadev, K., Zilbering, A., Zhu, L., and Goldstein, B. J. (2001) J. Biol. Chem. 276, 21938-21942). In the present work, we explored the potential role of insulin-induced H(2)O(2) generation on downstream insulin signaling using diphenyleneiodonium (DPI), an inhibitor of cellular NADPH oxidase that blocks insulin-stimulated cellular H(2)O(2) production. DPI completely inhibited the activation of phosphatidylinositol (PI) 3'-kinase activity by insulin and reduced the insulin-induced activation of the serine kinase Akt by up to 49%; these activities were restored when H(2)O(2) was added back to cells that had been pretreated with DPI. Interestingly, the H(2)O(2)-induced activation of Akt was entirely mediated by upstream stimulation of PI 3'-kinase activity, since treatment of 3T3-L1 adipocytes with the PI 3'-kinase inhibitors wortmannin or LY294002 completely blocked the subsequent activation of Akt by exogenous H(2)O(2). Preventing oxidant generation with DPI also blocked insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane, providing further evidence for an oxidant signal in the regulation of the distal insulin-signaling cascade. Finally, in contrast to the cellular mechanism of H(2)O(2) generation by other growth factors, such as platelet-derived growth factor, we also found that insulin-stimulated cellular production of H(2)O(2) may occur through a unique pathway, independent of cellular PI 3'-kinase activity. Overall, these data provide insight into the physiological role of insulin-dependent H(2)O(2) generation, which is not only involved in the regulation of tyrosine phosphorylation events in the early insulin signaling cascade but also has important effects on the regulation of downstream insulin signaling, involving the activation of PI 3'-kinase, Akt, and ultimately cellular glucose transport in response to insulin.  相似文献   

8.
Bilayer asymmetry in the apical membrane may be important to the barrier function exhibited by epithelia in the stomach, kidney, and bladder. Previously, we showed that reduced fluidity of a single bilayer leaflet reduced water permeability of the bilayer, and in this study we examine the effect of bilayer asymmetry on permeation of nonelectrolytes, gases, and protons. Bilayer asymmetry was induced in dipalmitoylphosphatidylcholine liposomes by rigidifying the outer leaflet with the rare earth metal, praseodymium (Pr3+). Rigidification was demonstrated by fluorescence anisotropy over a range of temperatures from 24 to 50 degrees C. Pr3+-treatment reduced membrane fluidity at temperatures above 40 degrees C (the phase-transition temperature). Increased fluidity exhibited by dipalmitoylphosphatidylcholine liposomes at 40 degrees C occurred at temperatures 1-3 degrees C higher in Pr3+-treated liposomes, and for both control and Pr3+-treated liposomes permeability coefficients were approximately two orders of magnitude higher at 48 degrees than at 24 degrees C. Reduced fluidity of one leaflet correlated with significantly reduced permeabilities to urea, glycerol, formamide, acetamide, and NH3. Proton permeability of dipalmitoylphosphatidylcholine liposomes was only fourfold higher at 48 degrees than at 24 degrees C, indicating a weak dependence on membrane fluidity, and this increase was abolished by Pr3+. CO2 permeability was unaffected by temperature. We conclude: (a) that decreasing membrane fluidity in a single leaflet is sufficient to reduce overall membrane permeability to solutes and NH3, suggesting that leaflets in a bilayer offer independent resistances to permeation, (b) bilayer asymmetry is a mechanism by which barrier epithelia can reduce permeability, and (c) CO(2) permeation through membranes occurs by a mechanism that is not dependent on fluidity.  相似文献   

9.
脱乙酰壳多糖处理可以诱导人参细胞产生H2 O2 ,增加人参皂苷的累积 ,提高鲨烯合酶 (squalenesynthase,GSS)与鲨烯环氧酶 (squaleneepoxidase,GSE)基因的转录水平。质膜NADPH氧化酶的抑制剂DPI,H2 O2 的淬灭剂DMTU与DHC可以抑制脱乙酰壳多糖的这些效应 ,暗示脱乙酰壳多糖可以活化质膜NADPH氧化酶而产生H2 O2 ,H2 O2 进而作为第二信使诱导gss与gse基因转录以及皂苷的合成。质膜钙通道抑制剂LaCl3与内质网钙通道抑制剂RR ,以及蛋白激酶抑制剂K2 5 2a都能削弱脱乙酰壳多糖促进皂苷积累和gss、gse转录的效应 ,说明胞内Ca2 浓度的升高与蛋白质磷酸化都参与了脱乙酰壳多糖诱导的gss、gse的转录以及皂苷的合成  相似文献   

10.
Membrane fluidity adaptation to the low growth temperature in Bacillus subtilis involves two distinct mechanisms: (1) long-term adaptation accomplished by increasing the ratio of anteiso- to iso-branched fatty acids and (2) rapid desaturation of fatty acid chains in existing phospholipids by induction of fatty acid desaturase after cold shock. In this work we studied the effect of medium composition on cold adaptation of membrane fluidity. Bacillus subtilis was cultivated at optimum (40 degrees C) and low (20 degrees C) temperatures in complex medium with glucose or in mineral medium with either glucose or glycerol. Cold adaptation was characterized by fatty acid analysis and by measuring the midpoint of phospholipid phase transition T(m) (differential scanning calorimetry) and membrane fluidity (DPH fluorescence polarization). Cells cultured and measured at 40 degrees C displayed the same membrane fluidity in all three media despite a markedly different fatty acid composition. The T(m) was surprisingly the highest in the case of a culture grown in complex medium. On the contrary, cultivation at 20 degrees C in the complex medium gave rise to the highest membrane fluidity with concomitant decrease of T(m) by 10.5 degrees C. In mineral media at 20 degrees C the corresponding changes of T(m) were almost negligible. After a temperature shift from 40 to 20 degrees C, the cultures from all three media displayed the same adaptive induction of fatty acid desaturase despite their different membrane fluidity values immediately after cold shock.  相似文献   

11.
在高温锻炼(37℃,2h)过程中,豌豆(Pisum sativum L.)叶片过氧化氢(H_2O_2)和游离态水杨酸(SA)含量与质膜ATP酶(H~ -ATPase)活性都有一个高峰,H_2O_2的迸发早于游离态SA的积累,而质膜H~ -ATPase活性高峰的出现则迟于SA高峰;活性氧清除剂、抗氧化剂、质膜NADPH氧化酶抑制剂和H_2O_2的淬灭剂预处理均可有效地阻止高温下H_2O_2和SA的积累以及质膜H~ -ATPase活性的增加。根据以上结果推测,H_2O_2、质膜H~ -ATPase和SA均参与耐热性诱导相关的信号传递,前者作用于SA的上游,而后者在SA下游起作用。  相似文献   

12.
Purdy PH  Fox MH  Graham JK 《Cryobiology》2005,51(1):102-112
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.  相似文献   

13.
Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco   总被引:30,自引:2,他引:30       下载免费PDF全文
Leon J  Lawton MA  Raskin I 《Plant physiology》1995,108(4):1673-1678
Hydrogen peroxide induced the accumulation of free benzoic acid (BA) and salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. Six hours after infiltration with 300 mM H2O2, the levels of BA and SA in leaves increased 5-fold over the levels detected in control leaves. The accumulation of BA and SA was preceded by the rapid activation of benzoic acid 2-hydroxylase (BA2H) in the H2O2-infiltrated tissues. This enzyme catalyzes the formation of SA from BA. Enzyme activation could be reproduced in vitro by addition of H2O2 or cumene hydroperoxide to the assay mixture. H2O2 was most effective in vitro when applied at 6 mM. In vitro activation of BA2H by peroxides was inhibited by the catalase inhibitor 3-amino-1,2,4-triazole. We suggest that H2O2 activates SA biosynthesis via two mechanisms. First, H2O2 stimulates BA2H activity directly or via the formation of its substrate, molecular oxygen, in a catalase-mediated reaction. Second, higher BA levels induce the accumulation of BA2H protein in the cells and provide more substrate for this enzyme.  相似文献   

14.
A selective analysis of adsorbed mitoxantrone (MTX) was performed by surface-enhanced Raman scattering (SERS) at the range of cellular membrane. Disruption of the membrane fluidity was carried out to appraise changes in membrane adsorption of MTX and drug uptake in sensitive (HCT-116 S) and resistant BCRP/MXR (HCT-116 R) cells. Based on spectral MTX modifications, micro-SERS spectroscopy discriminated clearly drug adsorption phenomena on plasma membrane from drug in solution. A 3-fold higher SERS intensity of MTX for HCT-116 R was observed concluding to a higher drug adsorption on resistant membrane. The increase of membrane fluidity with benzyl alcohol (BA) or chloroform (CF) resulted in a 3-fold decrease of MTX adsorption on HCT-116 R, exclusively. BA and CF improved intracellular accumulation of MTX (e.g., 823 and 191 pmol MTX/10(6) HCT-116 R incubated with or without BA). At 4 degrees C, drug accumulation measurements showed a decrease of MTX permeability in resistant membrane (42 pmol MTX/10(6) cells), restored with fluidizers (e.g., 342 pmol MTX/10(6) cells with BA). Fluorescence confocal microscopy involved an exclusive MTX emission around the plasma membrane of resistant cells whereas fluidizers increased the intracellular uptake of MTX in both cell lines at the same time with less drug emission around the plasma membrane. Changes of the membrane structure of resistant cells should modify both drug adsorption and membrane permeation.  相似文献   

15.
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.  相似文献   

16.
Antigen-induced stimulatory signals as well as histamine secretion from the RBL-2H3 cells were found to be highly temperature dependent. There was no hydrolysis of inositol phospholipids, increase in cytosol calcium concentration (calcium signal), or secretion upon antigen stimulation at temperatures below 20 degrees C. At higher temperatures (i.e., 20 to 37 degrees C), all responses increased in extent with increase in temperature. Temperatures of 38 degrees C or higher, however, resulted in a marked decline in all responses, until no responses were observed at 40 to 42 degrees C. As indicated by the decay in calcium signal, the duration of response was also temperature dependent. The response was of long duration at 30 to 32 degrees C, but it became progressively more transient as the temperature was increased from 32 to 40 degrees C. The effects of low or high temperature were fully reversible. For example, in the presence of antigen, stimulatory signals immediately appeared once the temperature was decreased from 40 to 37 degrees C. Although the diminished responses could be explained, in part, by a reduction in rates of IgE receptor aggregation and phospholipase C activity, the reductions were insufficient to account for complete loss of activity at 40 degrees C. We conclude that generation of intracellular signals in 2H3 cells is blocked by quite small elevations in temperature above 37 degrees C, possibly as consequence of changes in membrane fluidity.  相似文献   

17.
过氧化氢诱导酿酒酵母细胞膜透性和组成的变化   总被引:3,自引:0,他引:3  
以下简述了过氧化氢(H2O2)作为一种信号分子诱导并调节酿酒酵母(Saccharomyces cerevisiae)细胞膜的变化。H2O2是一种强氧化剂,可以跨膜扩散进入细胞中,形成跨膜梯度;当外源H2O2达到亚致死剂量时,酿酒酵母的细胞膜透性和流动性降低,产生跨膜梯度,从而限制H2O2向细胞内的扩散速率,保护细胞免受氧化胁迫的伤害。研究表明,由H2O2引起的膜透性和流动性的变化与膜的组成有关:当酵母细胞对H2O2产生适应时,与膜组成和微区域变化有关的几个基因的表达发生了改变。膜组成的变化和微区域的调整还可能与H2O2依赖的信号途径有关,即以H2O2为信号分子,调节膜的变化并赋予细胞对氧化压力更高的适应性,但这种信号分子的具体传递途径及机制还需要进一步研究。  相似文献   

18.
In the present study, we focused on whether Intracellular free Ca^2+ ([Ca^2+],) regulates the formation of mltochondrlal permeability transition pore (MPTP) In H2O2-induced apoptosis In tobacco protoplasts. It was shown that the decrease In mltochondrlal membrane potential (△ψm) preceded the appearance of H2O2-Induced apoptosls; pretreatment with the specific MPTP Inhibitor cyclosporine A, which also Inhibits Ca^2+ cycling by the mitochondria, effectively retarded apoptosls and the decrease In △ψm. Apoptosls and decreased △ψm were exacerbated by CaCl2, whereas the plasma membrane voltage-dependent Ca^2+ channel blocker lanthanum chloride (LaCl3) attentuated these responses. Chelation of extracellular Ca^2+ with EGTA almost totally Inhibited apoptosls and the decrease In △ψmInduced by H2O2. The time-course of changes In [Ca^2+]l In apoptosls was detected using the Ca^2+ probe Fiuo-3 AM. These studies showed that [Ca^2+]1 was Increased at the very early stage of H2O2-Induced apoptosls. The EGTA evidently Inhibited the Increase In [Ca^2+]1 Induced by H=O=, whereas It was only partially Inhibited by LaCl3. The results suggest that H2O2 may elevate cytoplasmic free Ca^2+ concentrations In tobacco protoplasts, which mainly results from the entry of extracellular Ca^2+, to regulate mltochondrlal permeability transition. The signaling pathway of [Ca^2+]1-medlated mltochondrlal permeability transition was associated with H2O2-Induced apoptosis In tobacco protoplaete.  相似文献   

19.
20.
Membrane fluidity of human erythrocytes treated with H2O2 (1--20 mM) was studied using three kinds of fatty acid spin labels. A strongly immobilized signal appeared on exposure of erythrocytes to H2O2 but was not observed in either H2O2- or Fenton's reagent-treated ghosts or lipid vesicles prepared from H2O2-treated erythrocytes, indicating that the appearance of this signal necessitates the reaction of hemoglobin with H2O2 and is not due to lipid peroxidation. The ESR spectrum of maleimide-prelabeled erythrocytes showed an isotropic signal and the rotational correlation time (tau c) increased as the concentration of H2O2 was increased. Furthermore, maleimide labeling of H2O2-pretreated erythrocytes showed a strongly immobilized component, in addition to a weakly immobilized component. From the relative ratio of the signal intensity of hemoglobin and membrane proteins, it was found that label molecules bound predominantly to hemoglobin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of H2O2-treated erythrocytes demonstrated globin aggregation. Therefore, the changes in the ESR signal observed on H2O2 treatment may be due to some change in hemoglobin, such as globin aggregation or its binding to the membranes. The ESR spectrum of H2O2-treated erythrocytes at -196 degrees C is characterized by signals of nonheme ferric iron type (g equal to 4.3), low spin ferric iron, and free radical type at g equal to 2.00. At higher H2O2 concentrations, the ESR lines due to low spin ferric iron became broad and their peak heights decreased, compared with that at g equal to 2.00 or 4.3. These results indicate that oxidative stress such as decrease of membrane fluidity, lipid peroxidation, and globin aggregation in H2O2-treated erythrocytes is dependent on the reaction of hemoglobin with H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号