共查询到20条相似文献,搜索用时 0 毫秒
1.
Derivatives of 3H-1,2-dithiole-3-thione (D3T) decrease the incidence and multiplicity of tumours in animals exposed to chemical carcinogens by a mechanism that is believed to involve their ability to increase tissue activities of Phase II detoxification enzymes. One D3T derivative, 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (oltipraz) has been investigated as a chemopreventative agent in humans, although large-scale trials of this substance were abandoned because of toxicity problems. While detailed information on the inductive ability of oltipraz is available, little is known of the relative activity of other D3T derivatives in vivo. In the present study, the effects of 10 dithiolethiones on the activities of two Phase II enzymes, NAD(P)H:quinone acceptor oxidoreductase and glutathione S-transferase, have been determined in a number of rat tissues. In all tissues, oltipraz was a relatively weak inducer. D3T itself and 5-methyl-, 4-chloro-5-methyl-, 4-phenyl- and 5,6-dihydrocyclopenta[c]-1,2-dithiole-3-thione (cyclopenta) were the most active compounds, both in terms of degree of induction and the number of organs in which enzyme induction occurred. Cyclopenta was a potent enzyme inducer in the urinary bladder, whereas 4-chloro-5-methyl-3H-1,2-dithiole-3-thione was particularly effective in the liver and the 4-phenyl derivative showed high inductive activity in the lungs. Comparison of the inducer activities of selected dithiolethiones, including cyclopenta, in cultured bladder carcinoma cells in vitro showed strong correlation with the in vivo data, suggesting that the different inducer activity of the dithiolethiones in vivo, at least in the bladder, is an intrinsic property of these compounds. In view of the evidence that Phase II enzyme induction plays a major role in the chemoprotective action of dithiolethiones, evaluation of the anti-cancer activity of the more potent inducers identified in this study would be of interest. 相似文献
2.
3.
4.
氧化应激能够破坏细胞内氧化还原平衡,造成系统和组织损伤,最终引起一系列疾病的产生.转录因子E2相关因子2(Nrf2),受Kelch样环氧氯丙烷相关蛋白1(Keap1)蛋白的调控,是细胞氧化应激反应中的关键因子,在氧化应激条件下,Nrf2从Keap1中分离,然后进入细胞核与抗氧化反应元件(ARE)结合,增加了Ⅱ相解毒酶的... 相似文献
5.
Cao Z Hallur S Qiu HZ Peng X Li Y 《Biochemical and biophysical research communications》2004,316(4):1043-1049
Substantial evidence suggests that peroxynitrite generated from the bi-radical reaction of nitric oxide and superoxide is critically involved in the pathogenesis of neurodegenerative disorders, such as Parkinson's disease. Reaction with sulfhydryl (SH)-containing molecules has been proposed to be a major detoxification pathway of peroxynitrite in biological systems. This study was undertaken to determine if chemically elevated intracellular reduced glutathione (GSH), a major SH-containing biomolecule, affords protection against peroxynitrite-mediated toxicity in cultured neuronal cells. Incubation of human neuroblastoma SH-SY5Y cells with the unique chemoprotectant, 3H-1,2-dithiole-3-thione (D3T), led to a significant elevation of cellular GSH in a concentration-dependent fashion. To examine the protective effects of D3T-induced GSH on peroxynitrite-mediated toxicity, SH-SY5Y cells were pretreated with D3T and then exposed to either the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), or the authentic peroxynitrite. We observed that D3T-pretreated cells showed a markedly increased resistance to SIN-1- or authentic peroxynitrite-induced cytotoxicity, as assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. Conversely, depletion of cellular GSH by buthionine sulfoximine (BSO) caused a marked potentiation of SIN-1- or authentic peroxynitrite-mediated cytotoxicity. To further demonstrate the causal role for GSH induction in D3T-mediated cytoprotection, SH-SY5Y cells were co-treated with BSO to abolish D3T-induced GSH elevation. Co-treatment of the cells with BSO was found to significantly reverse the protective effects of D3T on SIN-1- or authentic peroxynitrite-elicited cytotoxicity. Taken together, this study demonstrates for the first time that D3T can induce GSH in cultured SH-SY5Y cells, and that the D3T-augmented cellular GSH defense affords a marked protection against peroxynitrite-induced toxicity in cultured human neuronal cells. 相似文献
6.
7.
Jingjing Zhang Rui Zhou Changpei Xiang Fangfang Fan Jinhuan Gao Yi Zhang Shihuan Tang Haiyu Xu Hongjun Yang 《Journal of cellular and molecular medicine》2020,24(9):4967-4980
A large number of reactive oxygen species (ROS) aggravate cerebral damage after ischaemia/reperfusion (I/R). Glutathione (GSH), thioredoxin (Trx) and nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) represent three major antioxidant systems and play vital roles in affecting each other in eliminating ROS. Identification of drugs targeting triple antioxidant systems simultaneously is vital for inhibiting oxidative damage after cerebral I/R. This study investigated the protective effect of safflower extract and aceglutamide (SAAG) against cerebral I/R injury through modulating multiple antioxidant systems of GSH, Trx and Nrf2 and identified each role of its component acegluatminde (AG) and safflower extract (SA) on these systems. Safflower extract and aceglutamide and its two components decreased neurological deficit scores, infarction rate, apoptosis and oxidative damage after cerebral I/R while enhanced cell viability, decreased reactive oxygen species and nitric oxide level in H2O2‐induced PC12 cell model. Importantly, compared to its two components, SAAG demonstrated more effective enhancement of GSH, Nrf2 and Trx systems and a better protection against cerebral I/R injury. The enhanced antioxidant systems prevented ASK1 activation and suppressed subsequent p38 and JNK cascade‐mediated apoptosis. Moreover, inhibition of Trx and Nrf2 systems by auranofin and ML385 abolished SAAG‐mediated protection, respectively. Thus, enhanced triple systems by SAAG played a better protective role than those by SA or AG via inhibition of ASK1 cascades. This research provided evidence for the necessity of combination drugs from the perspective of multiple antioxidant systems. Furthermore, it also offers references for the study of combination drugs and inspires novel treatments for ischaemic stroke. 相似文献
8.
9.
Ivan Nalvarte Anastasios?E. Damdimopoulos Jo?lle Rüegg Giannis Spyrou 《Bioscience reports》2015,35(6)
The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1. 相似文献
10.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury. 相似文献
11.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury. 相似文献
12.
Xuling Su Shudong Wang Haiying Zhang Ge Yang Yang Bai Pinyi Liu Lingbin Meng Xin Jiang Ying Xin 《Journal of cellular and molecular medicine》2021,25(9):4408-4419
Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN’s persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2. 相似文献
13.
14.
Reduction of mitochondrial H2O2 by overexpressing peroxiredoxin 3 improves glucose tolerance in mice
Chen L Na R Gu M Salmon AB Liu Y Liang H Qi W Van Remmen H Richardson A Ran Q 《Aging cell》2008,7(6):866-878
H(2)O(2) is a major reactive oxygen species produced by mitochondria that is implicated to be important in aging and pathogenesis of diseases such as diabetes; however, the cellular and physiological roles of mitochondrial H(2)O(2) remain poorly understood. Peroxiredoxin 3 (Prdx3/Prx3) is a thioredoxin peroxidase localized in mitochondria. To understand the cellular and physiological roles of mitochondrial H(2)O(2) in aging and pathogenesis of age-associated diseases, we generated transgenic mice overexpressing Prdx3 (Tg(PRDX3) mice). Tg(PRDX3) mice overexpress Prdx3 in a broad range of tissues, and the Prdx3 overexpression occurs exclusively in the mitochondria. As a result of increased Prdx3 expression, mitochondria from Tg(PRDX3) mice produce significantly reduced amount of H(2)O(2), and cells from Tg(PRDX3) mice have increased resistance to stress-induced cell death and apoptosis. Interestingly, Tg(PRDX3) mice show improved glucose homeostasis, as evidenced by their reduced levels of blood glucose and increased glucose clearance. Tg(PRDX3) mice are also protected against hyperglycemia and glucose intolerance induced by high-fat diet feeding. Our results further show that the inhibition of GSK3 may play a role in mediating the improved glucose tolerance phenotype in Tg(PRDX3) mice. Thus, our results indicate that reduction of mitochondrial H(2)O(2) by overexpressing Prdx3 improves glucose tolerance. 相似文献
15.
Yeo Wool Kang Yoon Suk Kim Jun Young Park Ga‐eul Chu Young Chul Yang Byung Young Choi Won Gil Cho 《Cell biology international》2020,44(6):1394-1404
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia‐induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2). Both the hypoxic gas mixture (1% O2) and chemical hypoxia‐induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia‐mediated activation of caspase‐1. Active caspase‐1 induced the classical caspase‐dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase‐3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase‐1/classical caspase‐dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase‐3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia. 相似文献
16.
The component of the venom of the Taiwanese banded krait Bungarus multicinctus, beta-bungarotoxin (beta-BuTx), acts as an extremely potent inducer of neuronal apoptosis when applied to rat hippocampal cultures. While induction of cell death is dependent on toxin binding to voltage-activated K+ channels and subsequent internalization, the pro-apoptotic signals triggered by picomolar concentrations of beta-BuTx are not understood. Following toxin binding, a dramatic increase in intracellular Ca2+ became detectable after 30 min, and in reactive oxygen species (ROS) after 3-4 h. Conversely, Ca2+ chelators, radical quenchers and antioxidants efficiently antagonized beta-BuTx induced apoptosis. As shown for the antioxidant 2,3-dihydroxybenzoic acid, analysis by matrix assisted laser desorbtion-time of flight (MALDI-TOF) mass spectrometry excluded the protective effects to be due to reductive cleavage of the toxic beta-BuTx dimer. Inhibitors of the intracellular antioxidant defence system enhanced neuronal susceptibility to beta-BuTx, supporting the essential role of ROS in beta-BuTx-initiated apoptosis. Cell damage was accompanied by an accumulation of markers of oxidative cell stress, phospholipid hydroxyperoxides and the lipid peroxidation product, malonyl dialdehyde. These observations indicate that beta-BuTx-induced cell death resulted from an intracellular signalling cascade involving subsequent stages of a dramatic rise in free Ca2+, the accumulation of ROS, membrane lipid peroxidation and, finally, apoptosis. 相似文献
17.
18.
19.
20.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):818-826
A series of 3-alkyl/aryl-8-(furan-2-yl)thiazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine-2(3H)-thiones (3a–3f) were synthesised in good yield and evaluated for their anti-Parkinsonian and neuroprotective potential. The structures of the synthesised compounds were confirmed on the basis of their spectral data and elemental analysis. All of the compounds were found to be active in haloperidol-induced catalepsy and oxidative stress in mice. The most active compound carried a propyl group at the 3-position of the thiazolotriazolopyrimidine nucleus while substitution with a phenyl ring produced the least active compound among the series. A computational study was carried out for the prediction of pharmacokinetic properties and none of the compounds violated Lipinski’s rule of five, making them potentially promising agents for the treatment of Parkinson’s disease. 相似文献