首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cultivar Afghanistan peas are resistant to nodulation by many strains of Rhizobium leguminosarum bv. viciae but are nodulated by strain TOM, which carries the host specificity gene nodX. Some strains that lack nodX can inhibit nodulation of cv. Afghanistan by strain TOM. We present evidence that this "competitive nodulation-blocking" (Cnb) phenotype may result from high levels of Nod factors inhibiting nodulation of cv. Afghanistan peas. The TOM nod gene region (including nodX) is cloned on pIJ1095, and strains (including TOM itself) carrying pIJ1095 nodulate cv. Afghanistan peas very poorly but can nodulate other varieties normally. The presence of pIJ1095, which causes increased levels of Nod factor production, correlates with Cnb. Nodulation of cv. Afghanistan by TOM is also inhibited by a cloned nodD gene that increases nod gene expression and Nod factor production. Nodulation of cv. Afghanistan can be stimulated if nodD on pIJ1095 is mutated, thus severely reducing the level of Nod factor produced. Repression of nod gene expression by nolR eliminates the Cnb phenotype and can stimulate nodulation of cv. Afghanistan. Addition of Nod factors to cv. Afghanistan roots strongly inhibits nodulation. The Cnb+ strains and added Nod factors inhibit infection thread initiation by strain TOM. The sym2A allele determines resistance of cv. Afghanistan to nodulation by strains of R. leguminosarum bv. viciae lacking nodX. We tested whether sym2A is involved in Cnb by using a pea line carrying the sym2A region introgressed from cv. Afghanistan; nodulation in the introgressed line was inhibited by Cnb+ strains. Therefore, the sym2A region has an effect on Cnb, although another locus (or loci) may contribute to the stronger Cnb seen in cv. Afghanistan.  相似文献   

2.
3.
Summary The special ability of Rhizobium leguminosarum strain TOM to nodulate cv. Afghanistan peas had previously been shown to be determined by the symbiotic plasmid, pRL5JI, of this strain. A region of pRL5JI, 2.0 kb in size, was found to confer the ability to nodulate cv. Afghanistan peas when transferred to strains of R. leguminosarum which normally fail to nodulate this host. This region of pRL5JI, responsible for the extension of host-range, was closely linked to, but did not include, the genes required for root hair curling. Although extensive homology has been found between the R. leguminosarum nod genes on pRL5JI and those on the normal symbiotic plasmid pRL1JI, a fragment from the 2.0 kb region involved in nodulation of cv. Afghanistan has been identified, which was not homologous to DNA in strains which do not nodulate cv. Afghanistan.  相似文献   

4.
Summary Some primitive pea lines, e.g. cultivar Afghanistan, are resistant to nodulation by most strains of Rhizobium leguminosarum. However the Turkish strain TOM can nodulate cv. Afghanistan in addition to commercial pea varieties, and this extended host range is a property of its symbiotic plasmid, pRL5JI. A gene bank was constructed using DNA from a strain of R. leguminosarum containing pRL5JI. Following transfer to a strain of R. leguminosarum that had been cured of its symbiotic plasmid, two derivatives were isolated that contained cloned nodulation determinants, and were able to nodulate both cv. Afghanistan and a commercial pea variety. In addition, these clones conferred the ability to nodulate peas to a strain of R. phaseoli that had been previously cured of its symbiotic plasmid. One of these clones was subjected to mutagenesis with transposon Tn5, and 11 mutants were identified that were affected in nodulation ability. The sites of Tn5 insertions were mapped using restriction endonucleases and all were found to be within a region of 5 kb. The mutants fell into three classes on the basis of their map positions and their phenotypes on the two different pea lines tested. One class of mutants was affected in gene functions that were common to the nodulation of both pea hosts; a second class was impaired specifically in the nodulation of the commercial pea variety; a third class of mutant failed to confer on a normal strain of R. leguminosarum the supplementary ability to nodulate cv. Afghanistan.  相似文献   

5.
Rhizobium leguminosarum strains that can form nodules on Pisum sativum cv. Afghanistan have been reported as uncommon in Europe, North America and Africa [11, 12]. The organization of the nodulation regions of the symbiotic plasmids of five strains of R. leguminosarum originating from Denmark [9], which can nodulate P. sativum cv. Afghanistan, was compared with that of a Turkish strain (TOM [18]) by DNA hybridizations. Four of the five Danish strains were found to be very similar to the Turkish strain with respect to the overall organizations of their respective nodulation regions.  相似文献   

6.
A collection of 13 field isolates of Rhizobium leguminosarum bv. viciae that have the ability to nodulate the roots of current North American cultivars of peas as well as a “primitive” cultivar, Afghanistan, was examined. These isolates originated in diverse geographical regions of the world, which indicates that this phenotype is not restricted to isolates from any one region. When subclones of the nodulation region from one plasmid were used to examine EcoRI-fragment-length polymorphisms in this collection of strains as well as in a collection comprising strains that do not nodulate the primitive cultivar, polymorphism was found in both collections. With one exception, RisA6, all strains that nodulated cv. Afghanistan pea contained a region called nodX as an extension to the nodA BCIJ operon that has been observed in all R. leguminosarum bv. viciae strains, including those that do not nodulate cv. Afghanistan pea. RisA6 was also the only strain in which nodulating ability could not be associated with a conjugative plasmid.  相似文献   

7.
One type of competitive interaction among rhizobia is that between nonnodulating and nodulating strains of Rhizobium leguminosarum on primitive pea genotypes. Pisum sativum cv. Afghanistan nodulates effectively with R. leguminosarum TOM, and this can be blocked in mixed inoculations by R. leguminosarum PF2, which does not nodulate this cultivar. We termed this PF2 phenotype Cnb+, for competitive nodulation blocking. Strain PF2 contains three large plasmids including a 250-kilobase-pair symbiotic (Sym) plasmid. Transfer of this plasmid, pSymPF2, to nonblocking rhizobia conferred the Cnb+ phenotype on recipients in mixed inoculations on cultivar Afghanistan with TOM. A library of the PF2 genome constructed in the vector pMMB33 was used to isolate two cosmid clones which hybridize to pSymPF2. These cosmids, pDD50 and pDD58, overlapped to the extent of 23 kilobase pairs and conferred a Cnb+ phenotype on recipient Cnb- rhizobia, as did pSD1, a subclone from the common region.  相似文献   

8.
Rhizobium loti is a fast-growing Rhizobium species that has been described as a microsymbiont of plants of the genus Lotus. Nodulation studies show that Lotus plants are nodulated by R loti, but not by most other Rhizobium strains, indicating that R. loti produces specific lipo-chitin oligosaccharides (LCOs) which are necessary for the nodulation of Lotus plants. The LCOs produced by five different Rhizobium ioti strains have been purified and were shown to be N-acetylglucosamine pentasaccharides of which the non-reducing residue is N-methylated and N-acylated with c/s-vaccenic acid (C18:1) or stearic acid (C18:O) and carries a carbamoyl group. In one R. loti strain, NZP2037, an additional carbamoyl group is present on the non-reducing terminal residue. The major class of LCO molecules is substituted on the reducing terminal residue with 4-O-acetylfucose. Addition of LCOs to the roots of Lotus plants results in abundant distortion, swelling and branching of the root hairs, whereas spot inoculation leads to the formation of nodule primordia.  相似文献   

9.
The nodulation genes of rhizobia are involved in the production of the lipo-chitin oligosaccharides (LCO), which are signal molecules required for nodule formation. A mutation in nodZ of Bradyrhizobium japonicum results in the synthesis of nodulation signals lacking the wild-type 2- O -methylfucose residue at the reducing-terminal N -acetylglucosamine. This phenotype is correlated with a defective nodulation of siratro ( Macroptilium atropurpureum ). Here we show that transfer of nodZ to Rhizobium leguminosarum biovar (bv) viciae , which produces LCOs that are not modified at the reducing-terminal N -acetylglucosamine, results in production of LCOs with a fucosyl residue on C-6 of the reducing-terminal N -acetylglucosamine. This finding, together with in vitro enzymatic assays, indicates that the product of nodZ functions as a fucosyltransferase. The transconjugant R. leguminosarum strain producing fucosylated LCOs acquires the capacity to nodulate M. atropurpureum Glycine soja Vigna unguiculata and Leucaena leucocephala . Therefore, nodZ extends the narrow host range of R. leguminosarum bv. viciae to include various tropical legumes. However, microscopic analysis of nodules induced on siratro shows that these nodules do not contain bacteroids, showing that transfer of nodZ does not allow R. leguminosarum to engage in a nitrogen-fixing symbiosis with this plant.  相似文献   

10.
Summary One well-defined competitive interaction amongst rhizobia is that between compatible and non-compatible strains of Rhizobium leguminosarum with respect to the nodulation of some primitive pea genotypes. The Middle Eastern pea cv Afghanistan is nodulated effectively can R. leguminosarum TOM, but its capacity to nodulate can be blocked if a mixed inoculation is made with R. leguminosarum PF2. This PF2 phenotype (Cnb) is encoded by its symbiotic plasmid and cosmid clones thereof. We found that Cnb is also encoded by the well-characterized Sym plasmid pRL1JI of R. leguminosarum strain 248. We have isolated and characterized a 6.9 kb HindIII fragment of pSymPF2 which confers the Cnb+ phentoype on other (Cnb) rhizobia. A Tn5 site-directed Cnb mutant was constructed by homogenotization and was also found to be Nod on the European pea cv Rondo. DNA hybridization and complementation analysis indicated that the 6.9 kb Cnb+ fragment contained the nodD, nodABC and nodFE operons. Analysis of the Cnb phenotype of nod::Tn5 alleles of pRL1JI showed that mutations of nodC, nodD or nodE all abolished Cnb activity whereas mutants in nodI and nodJ reduced activity to 50% of the wild-type level.  相似文献   

11.
12.
Upon induction of their nodulation genes, the root nodule-inducing Rhizobium bacteria produce lipo-oligosaccharide signal molecules. All lipo-oligosaccharides identified from Rhizobium leguminosarum bv. viciae carry an O-acetyl group at the C-6 position of the non-reducing terminal sugar, the presence of which is important for biological activity and host specificity. Previously we showed that a functional nodL gene product is required for the presence of this O-acetyl moiety. The production of polyclonal antibodies against isolated NodL protein, using a NodL- overproducing Escherichia coli strain is described. These antibodies were used (i) to elucidate the subcellular localization of the NodL protein, which appeared to be present in the cytosol, and (ii) for the purification of native NodL protein from E. coli. Here we provide biochemical proof that purified NodL protein has transacetylating activity in vitro with acetyl-CoA as the acetyl donor. NodL protein appeared to be able to acetylate various substrates, such as lipo-oligosaccharides, chitin fragments and N-acetylglucosamine. For chitinpentaose as the substrate we have shown, using mass spectrometry and NMR spectroscopy, that NodL protein substitutes one O-acetyl group at the C-6 position of the non-reducing terminal sugar.  相似文献   

13.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

14.
The contributions of various nod genes from Rhizobium leguminosarum biovar viceae to host-specific nodulation have been assessed by transferring specific genes and groups of genes to R. leguminosarum bv. trifolii and testing the levels of nodulation on Pisum sativum (peas) and Vicia hirsuta. Many of the nod genes are important in determination of host-specificity; the nodE gene plays a key (but not essential) role and the efficiency of transfer of host specific nodulation increased with additional genes such that nodFE < nodFEL < nodFELMN. In addition the nodD gene was shown to play an important role in host-specific nodulation of peas and Vicia whilst other genes in the nodABCIJ gene region also appeared to be important. In a reciprocal series of experiments involving nod genes cloned from R. leguminosarum bv. trifolii it was found that the nodD gene enabled bv. viciae to nodulate Trifolium pratense (red clover) but the nodFEL gene region did not. The bv. trifolii nodD or nodFEL genes did significantly increase nodulation of Trifolium subterraneum (sub-clover) by R. leguminosarum bv. viciae. It is concluded that host specificity determinants are encoded by several different nod genes.  相似文献   

15.
We have analyzed the nucleotide sequences of the nodX genes from two strains of Rhizobium leguminosarum bv. viciae able to nodulate Afghan peas (strains A1 and Himalaya) and from two strains of R. leguminosarum bv. trifolii (ANU843 and CSF). The nodX genes of strains A1 and ANU843 were shown to be functional for the induction of nodules on Afghan peas. To analyze the cause of phenotypic differences of strain A1 and strain TOM we have studied the composition of the lipochitin-oligosaccharides (LCOs) produced by strain A1 after induction by the flavonoid naringenin or various pea root exudates. The structural analysis of the LCOs by mass spectrometry revealed that strain A1 synthesizes a family of at least 23 different LCOs. The use of exudates instead of naringenin resulted only in quantitative differences in the ratios of various LCOs produced.  相似文献   

16.
Summary Three nodulation-deficient (nod) mutants of Rhizobium leguminosarum were isolated following insertion of the transposon Tn5 into pRL1JI, the R. leguminosarum plasmid known to carry the nodulation genes. DNA adjacent to the nod: Tn5 alleles was subcloned and used to probe a cosmid clone bank containing DNA from a Rhizobium strain carrying pRL1JI. Two cosmid clones which showed homology with the probe contained about 10 kb of DNA in common. The R. leguminosarum host-range determinants were found to be present within this 10 kb common region since either of the cosmid clones could enable a cured R. phaseoli strain to nodulate peas instead of Phaseolus beans, its normal host. Electron microscopy of nodules induced by Rhizobium strains cured of their normal symbiotic plasmid but containing either of the two cosmid clones showed bacteroid-forms surrounded by a peri-bacteroid membrane, indicating that normal infection had occurred. Thus it is clear that this 10 kb region of nodDNA carries the genes that determine host range and that relatively few bacterial genes may be involved in nodule and bacteroid development.  相似文献   

17.
Several mutants defective in nodulation were isolated from Rhizobium japonicum strains 3I1b110 and 61A 76. Mutants of class I do not form nodules after incubation with soybean [Glycine max (L.) Merrill] for 17 days, but will do so by 28 days. When host plants other than G. max are infected with several of these strains, there is no detectable difference in the time of nodulation or size of nodules as compared to the wild type. Two mutants of class I (i. e., SM1 and SM2) have been shown previously to be altered in the lipopolysaccharide portion of their cell wall. Mutants of class II are not slow to nodulate but form fewer nodules than the wild type on all the host plants tested. Mutants of class III are unable to form nodules. Some bacteriophage-resistant mutants, altered in cell surface structure, fall into this class. Two mutants of class III do not bind to soybean roots.  相似文献   

18.
Summary A 14 kb DNA fragment from the Sym plasmid of the Rhizobium trifolii strain ANU843, known to carry common nodulation nod and host specific nodulation hsn genes, was extensively mutagenised with transposon Tn5. A correlation between the site of Tn5 insertion and the induced nodulation defect led to the identification of three specific regions (designated I, II, III) which affected nodulation ability. Twenty-three Tn5 insertions into region I (ca. 3.5 kb) affected normal root hair curling ability and abolished infection thread formation. The resulting mutants were unable to nodulate all tested plant species. Tn5 insertions in regions II and III resulted in mutants which showed an exaggerated root hair curling (Hac++) response on clover plants. Ten region II mutants which occurred over a 1.1 kb area showed a greatly reduced nodulation ability on clovers and produced aborted, truncated infection threads. Tn5 insertions into region III (ca. 1.5 kb) altered the outcome of crucial early plant recognition and infection steps by R. trifolii. Seven region III mutants displayed host-range properties which differed from the original parent strain. Region III mutants were able to induce marked root hair distortions, infection threads, and nodules on Pisum sativum including the recalcitrant Afghanistan variety. In addition region III mutants showed a poor nodulation ability on Trifolium repens even though the ability to induce infection threads was retained on this host. The altered host-range properties of region III mutants could only be revealed by mutation and the mutant phenotype was shown to be recessive.  相似文献   

19.
Ethylene inhibits nodulation in various legumes. In order to investigate strategies employed by Rhizobium to regulate nodulation, the 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene was isolated and characterized from one of the ACC deaminase-producing rhizobia, Rhizobium leguminosarum bv. viciae 128C53K. ACC deaminase degrades ACC, the immediate precursor of ethylene in higher plants. Through the action of this enzyme, ACC deaminase-containing bacteria can reduce ethylene biosynthesis in plants. Insertion mutants with mutations in the rhizobial ACC deaminase gene (acdS) and its regulatory gene, a leucine-responsive regulatory protein-like gene (lrpL), were constructed and tested to determine their abilities to nodulate Pisum sativum L. cv. Sparkle (pea). Both mutants, neither of which synthesized ACC deaminase, showed decreased nodulation efficiency compared to that of the parental strain. Our results suggest that ACC deaminase in R. leguminosarum bv. viciae 128C53K enhances the nodulation of P. sativum L. cv. Sparkle, likely by modulating ethylene levels in the plant roots during the early stages of nodule development. ACC deaminase might be the second described strategy utilized by Rhizobium to promote nodulation by adjusting ethylene levels in legumes.  相似文献   

20.
Plant genotypes that limit nodulation by indigenous rhizobia while nodulating normally with inoculant-strain nodule occupancy in Phaseolus vulgaris. In this study, eight of nine Rhizobium tropici strains and six of 15 Rhizobium etli strains examined, showed limited ability to nodulate and fix nitrogen with the two wild P. vulgaris genotypes G21117 and G10002, but were effective in symbiosis with the cultivated bean genotypes Jamapa and Amarillo Gigante. Five of the R. etli strains restricted in nodulation by G21117 and G10002 produced an alkaline reaction in yeast mannitol medium. In a competition experiment in which restricted strains were tested in 1:1 mixtures with the highly effective R. etli strain CIAT632, the restricted strains produced a low percentage of the nodules formed on G2117, but produced over 40% of the nodules formed on Jamapa. The interaction of the four Rhizobium strains with the two bean genotypes, based on the percentage of nodules formed, was highly significant (P<0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号