首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin-associated glycoprotein (MAG) and Nogo are potent inhibitors of neurite outgrowth from a variety of neurons, and they have been identified as possible components of the central nervous system myelin that prevents axonal regeneration in the adult vertebrate central nervous system. The activation of RhoA and Rho-kinase is reported to be an essential part of the signaling mechanism of these proteins. Here, we report that the collapsing response mediator protein-2 (CRMP-2) is phosphorylated by a Rho-kinase-dependent mechanism downstream of MAG or Nogo-66. The overexpression of the nonphosphorylated form of CRMP-2 at threonine 555, which is the phosphorylation site for Rho-kinase, counteracts the inhibitory effect of MAG on the postnatal cerebellar neurons. Additionally, the expression of the dominant negative form of CRMP-2 or knockdown of the gene using small interference RNA (siRNA) mimics the effect of MAG in vitro. Consistent with the function of CRMP-2, which promotes microtubule assembly, microtubule levels are down-regulated in the cerebellar neurons that are stimulated with MAG in vitro. Reduction in the density of microtubules is also observed in the injured axons following the spinal cord injury, and this effect depends on the Rho-kinase activity. Our data suggest the important roles of CRMP-2 and microtubules in the inhibition of the axon regeneration by the myelin-derived inhibitors.  相似文献   

2.
Theophylline, a competitive inhibitor of cAMP phosphodiesterase, inhibits the maturation of oocytes previously exposed to progesterone. Cyclic AMP levels remain constant both during normal maturation and in response to theophylline, even though the latter effectively inhibits phosphodiesterase activity in the oocyte. Thus, the inhibition is not attributable to elevated cAMP levels. Rather, we suggest that theophylline may exert its inhibitory effects on maturation either by reducing rates of protein synthesis or possibly through effects at the oocyte surface.  相似文献   

3.
Poly(L-glutamic acid) (PGA) suppresses the polymerization of porcine brain microtubule proteins and induces the depolymerization in vitro in a concentration-dependent manner. The extent of inhibition increases with increasing molecular weight of the PGA tested. A 50% inhibition of the protein polymerization was observed at a PGA (molecular weight = 60,000) to microtubule protein ratio of 0.04 (w/w), and complete inhibition was obtained at a ratio of 0.07. Such an inhibition on the polymerization by PGA is greatly decreased when Mg2+ is present at a higher concentration. The addition of PGA raises the critical concentration of microtubule proteins necessary for assembly. During incubation with PGA, microtubule proteins retain the ability to assemble, i.e., substoichiometric amounts of taxol considerably relieve the inhibition of assembly by PGA. PGA interacts with microtubule-associated proteins (MAPs) preferentially, because the amount of MAPs binding to PGA-Sepharose 4B is much larger than that of tubulin. Tau proteins were observed only in adsorbed fractions, while MAP-2 was present in both unbound and adsorbed fractions.  相似文献   

4.
Five monoclonal antibodies against N-terminal domains of alpha- or beta-tubulin were tested for their ability to interfere with the in vitro formation of microtubules. Although all the antibodies exhibited similar association constants for immobilized tubulin, they differed in their inhibitory effect on microtubule assembly. For the most potent antibody, TU-13, the antibody/tubulin molar ratio of about 1:320 was sufficient for a 50% inhibition. The data indicate that the surface regions of N-terminal domains of tubulin are involved in the formation of microtubules.  相似文献   

5.
6.
A model describing the nucleation and assembly of purified tubulin has been developed. The novel feature of this model is a two stage nucleation process to allow the explicit inclusion of the two-dimensional nature of the early stages of microtubule assembly. In actin assembly the small starting nucleus has only one site for subunit addition as the two-stranded helix is formed. In contrast, microtubule assembly begins with the formation of a small two-dimensional section of microtubule wall. The model we propose is a modification of the work of Wegner and Engel (Wegner, A., and Engel, J. (1975) Biophys. Chem. 3, 215-225) wherein we add a second stage of nucleation to directly account for lateral growth, i.e. the addition of a small number of subunits to the side of an existing sheet structure. Subsequent elongation of the sheets is treated in the usual way. The experimental system used to test this model was the Mg2+/glycerol induced assembly of purified tubulin. The computer simulation of the polymerization time courses gave a fairly good fit to experimental kinetics for our model, where the primary nucleus comprises two protofilaments, of four and three subunits, and lateral growth requires a three-subunit nucleus to initiate a new protofilament.  相似文献   

7.
Hypnotic action of benzodiazepines: a possible mechanism   总被引:1,自引:0,他引:1  
A Y Chweh  Y B Lin  E A Swinyard 《Life sciences》1984,34(18):1763-1768
The objective of this investigation was to determine whether the effects of muscimol on benzodiazepine receptor binding relate to the hypnotic activity of nine benzodiazepines (clonazepam, triazolam, diazepam, flurazepam, nitrazepam, oxazepam, temazepam, clobazam, and chlordiazepoxide) and CL 218,872. There was no correlation between the basal receptor binding affinities of the drugs tested and their hypnotic potencies, whereas the benzodiazepine receptor agonists whose receptor bindings are strongly modulated by muscimol possess potent hypnotic activity. These results indicate that benzodiazepine receptors that couple to GABA receptors are involved in the hypnotic activity of the benzodiazepines.  相似文献   

8.
Phelps KK  Walker RA 《Biochemistry》2000,39(14):3877-3885
Although microtubule (MT) dynamic instability is thought to depend on the guanine nucleotide (GTP vs GDP) bound to the beta-tubulin of the terminal subunit(s), the MT minus end exhibits dynamic instability even though the terminal beta-tubulin is always crowned by GTP-alpha-tubulin. As an approach toward understanding how dynamic instability occurs at the minus end, we investigated the effects of N-ethylmaleimide-modified tubulin (NTb) on elongation and rapid shortening of individual MTs. NTb preferentially inhibits minus end assembly when combined with unmodified tubulin (PCTb), but the mechanism of inhibition is unknown. Here, video-enhanced differential interference contrast microscopy was used to observe the effects of NTb on MTs assembled from PCTb onto axoneme fragments. MTs were exposed to mixtures of PCTb (25 microM) and NTb (labeled on approximately 1 Cys per monomer) in which the NTb/PCTb ratio varied from 0.025 to 1. The NTb/PCTb mixture had a slight inhibitory effect on the plus end elongation rate, but significantly inhibited or completely arrested minus end elongation. For the majority of mixtures that were assayed (0.1-1 NTb/PCTb ratio), minus end MT length remained constant until the NTb/PCTb mixture was replaced. Replacement with PCTb allowed elongation to proceed, whereas replacement with buffer or NTb caused minus ends to shorten. Taken together, the results indicate that NTb associates with both plus and minus ends and that NTb acts to reversibly cap minus ends only when PCTb is also present. Low-resolution mapping of labeled Cys residues, along with previous experiments with other Cys-reactive compounds, suggests that modification of beta-tubulin Cys(239) may be associated with the capping action of NTb.  相似文献   

9.
Nucleation of microtubule (MT) organization of the cytoplasmic microtubule complex (CMTC) from the microtubule organizing centres (MTOC) was studied in enucleated cytoplasts of human diploid fibroblast (MRC-5) and mouse peritoneal macrophages in culture. Cytoplasts of both cell types could not organize the complete CMTC. Aberrant MT patterns were seen in MRC-5 cells while mouse macrophages showed occurrence of few short MT. The studies suggest that nucleus may have a role in determining CMTC.  相似文献   

10.
Inhibition of microtubule assembly by actinomycin D, an anti-tumour drug   总被引:1,自引:0,他引:1  
Effect of actinomycin D, an antibiotic, was investigated on the biological function of tubulin from bovine brain. The microtubule assembly was inhibited nearly completely when an equal molar ratio of actinomycin D and tubulin was used. The depolymerisation of the same, however, was not altered under the same conditions. The competence of tubulin to bind colchicine and GTP was also not affected. Chromatographic and the spectrophotometric studies showed that 0.94 mol of actinomycin D binds per mole of tubulin.  相似文献   

11.
Takao Arai 《FEBS letters》1983,155(2):273-276
An antitumor drug, 3-(1-anilinoethylidene)-5-benzylpyrrolidine-2,4-dione (TN-16) inhibited the assembly of porcine brain microtubules in vitro. The assembly induced by taxol was also suppressed by the drug. However, the latter required much higher concentration of TN-16 than the former. Binding studies by means of the fluorometric method and the spun-column procedure indicate that the inhibition was caused by the reversible binding of the drug to the colchicine-sensitive site of tubulin. The affinity of TN-16 to tubulin was almost equal to that of nocodazole.  相似文献   

12.
C D Surridge  R G Burns 《Biochemistry》1991,30(44):10813-10817
An inhibitor of microtubule assembly has been identified and partially purified from microtubule-depleted brain extracts from day-old chicks and 4-month-old calf. This inhibitor suppresses the self-nucleation of microtubules in vitro with minimal effect upon the final extent of assembly. It may have a developmental role in vivo as it is not detected in adult brain from either cattle or rabbit.  相似文献   

13.
Binding of calmodulin to microtubule-associated proteins (MAPs) was analyzed by the equilibrium gel filtration method. The apparent dissociation constant (Kd) of calmodulin binding was found to be 2 microM for tau, and 5 microM for MAP2. These Kd values were similar to the Kd previously determined for calmodulin binding to tubulin. The inhibitory effect of increasing concentrations of calmodulin on the kinetics of microtubule assembly from tau and tubulin was not mimicked by decreasing the concentration of tau alone or tubulin alone. These results suggest that calmodulin inhibits microtubule assembly by its binding to both MAPs and tubulin.  相似文献   

14.
Lopus M  Panda D 《The FEBS journal》2006,273(10):2139-2150
Sanguinarine has been shown to inhibit proliferation of several types of human cancer cell including multidrug-resistant cells, whereas it has minimal cytotoxicity against normal cells such as neutrophils and keratinocytes. By analyzing the antiproliferative activity of sanguinarine in relation to its effects on mitosis and microtubule assembly, we found that it inhibits cancer cell proliferation by a novel mechanism. It inhibited HeLa cell proliferation with a half-maximal inhibitory concentration of 1.6 +/- 0.1 microM. In its lower effective inhibitory concentration range, sanguinarine depolymerized microtubules of both interphase and mitotic cells and perturbed chromosome organization in mitotic HeLa cells. At concentrations of 2 microM, it induced bundling of interphase microtubules and formation of granular tubulin aggregates. A brief exposure of HeLa cells to sanguinarine caused irreversible depolymerization of the microtubules, inhibited cell proliferation, and induced cell death. However, in contrast with several other microtubule-depolymerizing agents, sanguinarine did not arrest cell cycle progression at mitosis. In vitro, low concentrations of sanguinarine inhibited microtubule assembly. At higher concentrations (> 40 microM), it altered polymer morphology. Further, it induced aggregation of tubulin in the presence of microtubule-associated proteins. The binding of sanguinarine to tubulin induces conformational changes in tubulin. Together, the results suggest that sanguinarine inhibits cell proliferation at least in part by perturbing microtubule assembly dynamics.  相似文献   

15.
16.
17.
Production of Ran-guanosine triphosphate (GTP) around chromosomes induces local nucleation and plus end stabilization of microtubules (MTs). The nuclear protein TPX2 is required for RanGTP-dependent MT nucleation. To find the MT stabilizer, we affinity purify nuclear localization signal (NLS)-containing proteins from Xenopus laevis egg extracts. This NLS protein fraction contains the MT stabilization activity. After further purification, we used mass spectrometry to identify proteins in active fractions, including cyclin-dependent kinase 11 (Cdk11). Cdk11 localizes on spindle poles and MTs in Xenopus culture cells and egg extracts. Recombinant Cdk11 demonstrates RanGTP-dependent MT stabilization activity, whereas a kinase-dead mutant does not. Inactivation of Cdk11 in egg extracts blocks RanGTP-dependent MT stabilization and dramatically decreases the spindle assembly rate. Simultaneous depletion of TPX2 completely inhibits centrosome-dependent spindle assembly. Our results indicate that Cdk11 is responsible for RanGTP-dependent MT stabilization around chromosomes and that this local stabilization is essential for normal rates of spindle assembly and spindle function.  相似文献   

18.
Microtubule-binding proteins are a group of molecules that associate with microtubules, regulate the structural properties of microtubules, and thereby participate in diverse microtubule-mediated cellular activities. A recent mass spectrometry-based proteomic study has identified microtubule-associated protein 7 (MAP7) domain-containing 3 (Mdp3) as a potential microtubule-binding protein. However, its subcellular localization and functional importance are not characterized. In this study, by GST-pulldown assays, we found that Mdp3 interacted with tubulin both in cells and in vitro. Immunofluorescence microscopy and microtubule cosedimentation assays revealed that Mdp3 also associated with microtubules. Serial deletion experiments showed that the two coiled coil motifs of Mdp3 were critical for its interaction with tubulin and microtubules. Cold recovery and nocodazole washout assays further demonstrated an important role for Mdp3 in regulating cellular microtubule assembly. Our data also showed that Mdp3 significantly enhanced the stability of cellular microtubules. By tubulin turbidity assay, we found that Mdp3 could promote microtubule assembly and stability in the purified system. In addition, we found that Mdp3 expression varied during the cell cycle and in primary tissues. These findings thus establish Mdp3 as a novel microtubule-binding protein that regulates microtubule assembly and stability.  相似文献   

19.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

20.
Exposure of elongating (or assembled) bovine brain microtubules to phosphatidylinositol leads to polymerization arrest (or disassembly). The efficiency of phosphatidylinositol far exceeds the action of related phospholipids including phosphatidylethanolamine, phosphatidylcholine, 1,2-diacylglycerol, phosphatidylserine, phosphatidylglycerol, or phosphatidic acid. Phosphatidylinositol increases the apparent critical concentration for assembly, and the inhibitory effect of phosphatidylinositol on polymerization is reversed at higher concentrations of microtubule-associated proteins (MAP)s. Taxol- and glycerol-treated microtubules are insensitive to the destabilizing action of phosphatidylinositol; centrifugation and subsequent gel electrophoresis of such samples revealed that both MAP-2a and MAP-2b were selectively desorbed. Likewise, the desorption of MAP-2 was visualized by indirect immunofluorescence microscopy using primary antibodies directed toward tubulin and MAP-2. The instability of microtubules exposed to phosphatidylinositol appears to be related to the MAP-2 content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号