首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases.  相似文献   

2.
Summary The Nef protein of human immunodeficiency virus type 1 (HIV-1) is known to directly bind to the SH3 domain of human lymphocyte specific kinase (Lck) via a proline-rich region located in the amino terminal part of Nef. To address the question whether Nef binding to Lck SH3 involves residues outside the typical poly-proline peptide binding site and whether the Lck unique domain is involved in Nef–Lck interaction, we studied the direct interaction between both molecules using recombinant full-length HIV-1 Nef protein on one side and recombinantly expressed and uniformly 15N-isotope labeled Lck protein comprising unique and SH3 domains on the other side. Applying nuclear magnetic resonance spectroscopy we could show that only residues of Lck SH3, that are typically involved in binding poly-proline peptides, are affected by Nef binding. Further, for the first time we could rule out that residues of Lck unique domain are involved in binding to full length Nef protein. Thus, interactions of Lck unique domain to cellular partners e.g. CD4 or CD8, are not necessarily competitive with Lck binding to HIV-1 Nef.  相似文献   

3.
Nef is an HIV accessory protein required for high-titer viral replication and AIDS progression. Previous studies have shown that the SH3 domains of Hck and Lyn bind to Nef via proline-rich sequences in vitro, identifying these Src-related kinases as potential targets for Nef in vivo. Association of Nef with Hck causes displacement of the intramolecular interaction between the SH3 domain and the SH2-kinase linker, leading to kinase activation both in vitro and in vivo. In this study, we investigated whether interaction with Nef induces activation of other Src family kinases (Lyn, Fyn, Src, and Lck) following coexpression with Nef in Rat-2 fibroblasts. Coexpression with Nef induced Hck kinase activation and fibroblast transformation, consistent with previous results. In contrast, coexpression of Nef with Lyn was without effect, despite equivalent binding of Nef to full-length Lyn and Hck. Furthermore, Nef was found to suppress the kinase and transforming activities of Fyn, the SH3 domain of which exhibits low affinity for Nef. Coexpression with Nef did not alter c-Src or Lck tyrosine kinase or transforming activity in this system. Differential modulation of Src family members by Nef may produce unique downstream signals depending on the profile of Src kinases expressed in a given cell type.  相似文献   

4.
The Lck tyrosine kinase molecule plays an essential role in T cell activation and T cell development. Using the expression cloning technique, we have isolated a gene that encodes a molecule, LckBP1, able to associate with murine Lck. Analysis of full-length LckBP1 cDNA indicates at least four potentially important segments: a four tandem 37 amino acid repeat motif with a potential helix-turn-helix DNA binding motif; a proline-rich region; a proline-glutamate repeat; and an SH3 domain. These four regions are very similar to the human haematopoietic-specific protein 1 (HS1). Deletion mutant analysis of LckBP1 revealed two proline-rich regions that permit association with Lck SH3. One region contains prolines conserved among HS1 and cortactin, and the other region contains a potential MAP kinase recognition site. In vivo association between Lck and LckBP1 was confirmed by immunoprecipitation of lysates from a pre-T cell line and adult thymocytes using antibodies specific for Lck and LckBP1. LckBP1 is tyrosine phosphorylated after T-cell receptor stimulation. The SH3 domain and the potential helix-turn-helix motif in LckBP1 suggest that this molecule may associate with various molecules and function as a DNA binding molecule. The data also suggest that LckBP1 mediates intracellular signalling through Lck in T cells.  相似文献   

5.
Activation of Src family kinases by human immunodeficiency virus type 1 (HIV-1) Nef may play an important role in the pathogenesis of HIV/AIDS. Here we investigated whether diverse Nef sequences universally activate Hck, a Src family member expressed in macrophages and other HIV-1 target cells. In general, we observed that Hck activation is a highly conserved Nef function. However, we identified an unusual Nef variant from an HIV-positive individual that did not develop AIDS which failed to activate Hck despite the presence of conserved residues linked to Hck SH3 domain binding and kinase activation. Amino acid sequence alignment with active Nef proteins revealed differences in regions not previously implicated in Hck activation, including a large internal flexible loop absent from available Nef structures. Substitution of these residues in active Nef compromised Hck activation without affecting SH3 domain binding. These findings show that residues at a distance from the SH3 domain binding site influence Nef interactions allosterically with a key effector protein linked to AIDS progression.  相似文献   

6.
7.
Focal adhesion kinase (FAK) and CD4 fulfil vital functions in cellular signal transduction: FAK is a central component in integrin signalling, whereas CD4 plays essential roles in the immune defence. In T lymphocytes, FAK and CD4 localise to the same signalling complexes after stimulation by either the human immunodeficiency virus (HIV) gp120 glycoprotein or an antigen, suggesting the concerted action of FAK and CD4 in these cells. Using crystallography and microcalorimetry, we here show that the focal adhesion targeting (FAT) domain of FAK binds specifically to the CD4 endocytosis motif in vitro. This FAT-CD4 complex is structurally and thermodynamically similar to the one FAT forms with paxillin LD motifs. The CD4 binding site on FAT presents the same features as the established CD4 binding site on the HIV-1 Nef protein. The binding of FAT to CD4 is incompatible with the binding of Lck to CD4. We further show that HIV-1 gp120 triggers the association of CD4 with FAK in T cells, under conditions that are known to dissociate Lck from CD4. Our results suggest that the FAK-CD4 complex represents an alternative route for eliciting T-cell-specific signals and that it links gp120 engagement to distinctive T-cell signalling during HIV infection. In infected cells, HIV-1 Nef may displace FAK from CD4 to protect the cells from apoptosis.  相似文献   

8.
The nef genes of the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) and the related simian immunodeficiency viruses (SIVs) encode a protein (Nef) whose role in virus replication and cytopathicity remains uncertain. As an attempt to elucidate the function of nef, we characterized the nucleotide and corresponding protein sequences of naturally occurring nef genes obtained from several HIV-1-infected individuals. A consensus Nef sequence was derived and used to identify several features that were highly conserved among the Nef sequences. These features included a nearly invariant myristylation signal, regions of sequence polymorphism and variable duplication, a region with an acidic charge, a (Pxx)4 repeat sequence, and a potential protein kinase C phosphorylation site. Clustering of premature stop codons at position 124 was noted in 6 of the 54 Nef sequences. Further analysis revealed four stretches of residues that were highly conserved not only among the patient-derived HIV-1 Nef sequences, but also among the Nef sequences of HIV-2 and the SIVs, suggesting that Nef proteins expressed by these retroviruses are functionally equivalent. The "Nef-defining" sequences were used to evaluate the sequence alignments of known proteins reported to share sequence similarity with Nef sequences and to conduct additional computer-based searches for similar protein sequences. A gene encoding the consensus Nef sequence was also generated. This gene encodes a full-length Nef protein that should be a valuable tool in further studies of Nef function.  相似文献   

9.
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) is dispensable for viral replication in T-cell lines; however, it is essential for high virus loads and progression to simian AIDS (SAIDS) in SIV-infected adult rhesus macaques. Nef proteins from HIV type 1 (HIV-1), HIV-2, and SIV contain a proline-Xaa-Xaa-proline (PxxP) motif. The region of Nef with this motif is similar to the Src homology region 3 (SH3) ligand domain found in many cell signaling proteins. In virus-infected lymphoid cells, Nef interacts with a cellular serine/threonine kinase, designated Nef-associated kinase (NAK). In this study, analysis of viral clones containing point mutations in the nef gene of the pathogenic clone SIVmac239 revealed that several strictly conserved residues in the PxxP region were essential for Nef-NAK interaction. The results of this analysis of Nef mutations in in vitro kinase assays indicated that the PxxP region in SIV Nef was strikingly similar to the consensus sequence for SH3 ligand domains possessing the minus orientation. To test the significance of the PxxP motif of Nef for viral pathogenesis, each proline was mutated to an alanine to produce the viral clone SIVmac239-P104A/P107A. This clone, expressing Nef that does not associate with NAK, was inoculated into seven juvenile rhesus macaques. In vitro kinase assays were performed on virus recovered from each animal; the ability of Nef to associate with NAK was restored in five of these animals as early as 8 weeks after infection. Analysis of nef genes from these viruses revealed patterns of genotypic reversion in the mutated PxxP motif. These revertant genotypes, which included a second-site suppressor mutation, restored the ability of Nef to interact with NAK. Additionally, the proportion of revertant viruses increased progressively during the course of infection in these animals, and two of these animals developed fatal SAIDS. Taken together, these results demonstrated that in vivo selection for the ability of SIV Nef to associate with NAK was correlated with the induction of SAIDS. Accordingly, these studies implicate a role for the conserved SH3 ligand domain for Nef function in virally induced immunodeficiency.  相似文献   

10.
HIV‐1 Nef, an essential factor in AIDS pathogenesis, boosts virus replication in vivo. As one of its activities in CD4+ T‐lymphocytes, Nef potently retargets the Src family kinase (SFK) Lck but not closely related Fyn from the plasma membrane to recycling endosomes and the trans‐Golgi network to tailor T‐cell activation and optimize virus replication. Investigating the underlying mechanism we find Lck retargeting involves removal of the kinase from membrane microdomains. Moreover, Nef interferes with rapid vesicular transport of Lck to block anterograde transport and plasma membrane delivery of newly synthesized Lck. The sensitivity of Lck to Nef does not depend on functional domains of Lck but requires membrane insertion of the kinase. Surprisingly, the short N‐terminal SH4 domain membrane anchor of Lck is necessary and sufficient to confer sensitivity to Nef‐mediated anterograde transport block and microdomain extraction. In contrast, the SH4 domain of Fyn is inert to Nef‐mediated manipulation. Nef thus interferes with a specialized membrane microdomain‐associated pathway for plasma membrane delivery of newly synthesized Lck whose specificity is determined by the affinity of cargo for these sorting platforms. These results provide new insight into the mechanism of Nef action and the pathways used for SFK plasma membrane delivery.  相似文献   

11.
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.  相似文献   

12.
Src family protein-tyrosine kinase activity is suppressed by two intramolecular interactions. These involve binding of the SH2 domain to the phosphorylated C-terminal tail and association of the SH3 domain with a polyproline type II helix formed by the SH2-kinase linker. Here we show that SH3-dependent activation of the Src family member Hck by HIV-1 Nef binding or by SH2-kinase linker mutation does not affect tail tyrosine phosphorylation in fibroblasts. Surprisingly, replacement of the wild type Hck tail with a high-affinity SH2 domain-binding sequence did not affect Hck activation or downstream signaling by these SH3-dependent mechanisms, suggesting that activation through SH3 occurs without SH2-tail dissociation. These results identify SH3-linker interaction as an independent mode of Hck kinase regulation in vivo and suggest that different mechanisms of Src kinase activation may generate distinct output signals because of differences in SH2 or SH3 domain accessibility.  相似文献   

13.
The Tip protein from Herpesvirus saimiri interacts with the SH3 domain from the Src-family kinase Lck via a proline-containing sequence termed LBD1. Src-family kinase SH3 domains related to Lck have been shown to be dynamic in solution and partially unfold under physiological conditions. The rate of such partial unfolding is reduced by viral protein binding. To determine if the Lck SH3 domain displayed similar behavior, the domain was investigated with hydrogen exchange and mass spectrometry. Lck SH3 was found to be highly dynamic in solution. While other SH3 domains require as much as 10,000 sec to become totally deuterated, Lck SH3 became almost completely labeled within 200 sec. A partial unfolding event involving 8-10 residues was observed with a half-life of approximately 10 sec. Tip LBD1 binding did not cause gross structural changes in Lck SH3 but globally stabilized the domain and reduced the rate of partial unfolding by a factor of five. The region of partial unfolding in Lck SH3 was found to be similar to that identified for other SH3 domains that partially unfold. Although the sequence conservation between Lck SH3 and other closely related SH3 domains is high, the dynamics do not appear to be conserved.  相似文献   

14.
The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy—termed the "R-clamp”—that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.  相似文献   

15.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

16.
K Saksela  G Cheng    D Baltimore 《The EMBO journal》1995,14(3):484-491
Human immunodeficiency virus (HIV) and simian immunodeficiency virus Nef proteins contain a conserved motif with the minimal consensus (PxxP) site for Src homology region 3 (SH3)-mediated protein-protein interactions. Nef PxxP motifs show specific binding to biotinylated SH3 domains of Hck and Lyn, but not to those of other tested Src family kinases or less related proteins. A unique cooperative role of a distant proline is also observed. Endogenous Hck of monocytic U937 cells can be specifically precipitated by matrix-bound HIV-1 Nef, but not by mutant protein lacking PxxP. Intact Nef PxxP motifs are dispensable for Nef-induced CD4 down-regulation, but are required for the higher in vitro replicative potential of Nef+ viruses. Thus, CD4 down-regulation and promotion of viral growth are two distinct functions of Nef, and the latter is mediated via SH3 binding.  相似文献   

17.
The Nef protein of the primate lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is essential for high-titer viral replication and acquired immune deficiency syndrome (AIDS) progression. Nef binds to the macrophage-specific Src family member Hck through its SH3 domain, resulting in constitutive kinase activation capable of transforming rodent fibroblasts. Nef-Hck interaction may be essential for M-tropic HIV replication and AIDS pathogenesis, identifying this virus-host protein complex as a rational target for anti-HIV drug discovery. Here, we investigated whether interaction with Hck is a common feature of Nef alleles from different strains of HIV-1. We compared the ability of four different laboratory HIV-1 Nef alleles (SF2, LAI, ELI, and Consensus) to induce Hck activation and transformation in our Rat-2 fibroblast model. While SF2, LAI, and Consensus Nef all bound and activated Hck, ELI Nef failed to bind to the Hck SH3 domain in vitro and did not cooperate with Hck in fibroblast transformation. Molecular modeling identified three residues in the core region of SF2 Nef (Ala83, His116, and Tyr120) which are substituted in ELI with Glu, Asn, and Ile, respectively. Two of these residues (Ala83 and Tyr120) form part of the hydrophobic pocket that contacts Ile 96 in the RT loop of the Hck SH3 domain in the Nef-SH3 crystal structure. Substitution of SF2 Nef Tyr120 with Ile completely abolished Hck recruitment and activation. In a complementary experiment, substitution of ELI Ile120 with Tyr partly restored ELI Nef-induced Hck activation and transformation in Rat-2 cells. Hck activation increased further by substitution of ELI Glu83 with Ala and Asn116 with His, suggestive of a supportive role for these residues in Hck binding. This study provides the first biological evidence that the HIV-1 Nef hydrophobic pocket is critical to Hck recruitment and activation in vivo. Targeting the Nef hydrophobic pocket with a small molecule may be sufficient to disrupt Nef signaling through Hck in HIV-infected macrophages, slowing disease progression.  相似文献   

18.
Herpesvirus saimiri codes for a tyrosine kinase interacting protein (Tip) that interacts with both the SH3 domain and the kinase domain of the T-cell-specific tyrosine kinase Lck via two separate motifs. The activation of Lck by Tip is considered as a key event in the transformation of human T-lymphocytes during herpesviral infection. We investigated the interaction of proline-rich Tip peptides with the LckSH3 domain starting with the structural characterization of the unbound interaction partners. The solution structure of the LckSH3 was determined by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy using 44 residual dipolar couplings in addition to the conventional experimental restraints. Circular dichroism spectroscopy proved that the polyproline helix of Tip is already formed prior to SH3 binding and is conformationally stable. NMR titration experiments point out three major regions of the Tip-Lck interaction comprising the RT loop, the n-src loop, and a helical turn preceding the last strand of the beta-sheet. Further changes of the chemical shifts were observed for the N- and C-terminal beta-strands of the SH3 domain, indicating additional contacts outside the proline-rich segment or subtle structural rearrangements transmitted from the binding site of the proline helix. Fluorescence spectroscopy shows that Tip binds to the SH3 domains of several Src kinases (Lck, Hck, Lyn, Src, Fyn, Yes), exhibiting the highest affinities for Lyn, Hck, and Lck.  相似文献   

19.
The Src-homology 3 (SH3) domain is one of the most frequent protein recognition modules (PRMs), being represented in signal transduction pathways and in several pathologies such as cancer and AIDS. Grb2 (growth factor receptor-bound protein 2) is an adaptor protein that contains two SH3 domains and is involved in receptor tyrosine kinase (RTK) signal transduction pathways. The HIV-1 transactivator factor Tat is required for viral replication and it has been shown to bind directly or indirectly to several host proteins, deregulating their functions. In this study, we show interaction between the cellular factor Grb2 and the HIV-1 trans-activating protein Tat. The binding is mediated by the proline-rich sequence of Tat and the SH3 domain of Grb2. As the adaptor protein Grb2 participates in a wide variety of signaling pathways, we characterized at least one of the possible downstream effects of the Tat/Grb2 interaction on the well-known IGF-1R/Raf/MAPK cascade. We show that the binding of Tat to Grb2 impairs activation of the Raf/MAPK pathway, while potentiating the PKA/Raf inhibitory pathway. The Tat/Grb2 interaction affects also viral function by inhibiting the Tat-mediated transactivation of HIV-1 LTR and viral replication in infected primary microglia.  相似文献   

20.
Tran T  Hoffmann S  Wiesehan K  Jonas E  Luge C  Aladag A  Willbold D 《Biochemistry》2005,44(45):15042-15052
We analyzed the ligand binding specificity of the lymphocyte specific kinase (Lck) SH3 domain. We identified artificial Lck SH3 ligands using phage display. In addition, we analyzed Lck SH3 binding sites within known natural Lck SH3 binding proteins using an Lck specific binding assay on membrane-immobilized synthetic peptides. On one hand, from the phage-selected peptides, representing mostly special class I' ligands, a well-defined consensus sequence was obtained. Interestingly, a histidine outside the central polyproline motif contributes significantly to Lck SH3 binding affinity and specificity. On the other hand, we confirmed previously mapped Lck SH3 binding sites in ADAM15, HS1, SLP76, and NS5A, and identified putative Lck SH3 binding sites of Sam68, FasL, c-Cbl, and Cbl-b. Without exception, the comparatively diverse Lck SH3 binding sites of all analyzed natural Lck SH3 binding proteins emerged as class II proteins. Possible explanations for the observed variations between artificial and native ligands-which are not due to significant K(D) value differences as shown by calculating Lck SH3 affinities of artificial peptide PD1-Y(-3)R as well as for peptides comprising putative Lck SH3 binding sites of NS5A, Sos, and Sam68-are discussed. Our data suggest that phage display, a popular tool for determining SH3 binding specificity, must-at least in the case of Lck-not irrevocably mirror physiologically relevant protein-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号