首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
There is a tension between science and philosophy, but this tension need not engender enmity or derision. Scientists and philosophers can work together, and we argue that working together is beneficial to both, even if it is sometimes uncomfortable. We offer examples of how philosophy can autonomously and effectively inform scientific practice. Science and philosophy share certain methodological concerns and practices; therefore, scientists who disregard philosophy are vulnerable to critical conceptual mistakes. If our arguments are correct, and if it can also be shown that science informs philosophy, then, while it is possible for both disciplines to operate autonomously, each should welcome the checks and balances that each provides for one another in the investigation and explanation of reality.  相似文献   

3.
This paper addresses the question of how to understand the relationship between Cultural Evolutionary Science (CES) and the social sciences, given that they coexist and both study cultural change. I argue that CES is best understood as having a unificatory or integrative role between evolutionary biology and the social sciences, and that it is best characterized as a bridge field; I describe the concept of a bridge field and how it relates to other non-reductionist accounts of unification or integration used in the philosophy of science literature.  相似文献   

4.
Recent work in the philosophy of biology has attempted to clarify and defend the use of the biodiversity concept in conservation science. I argue against these views, and give reasons to think that the biodiversity concept is a poor fit for the role we want it to play in conservation biology on both empirical and conceptual grounds. Against pluralists, who hold that biodiversity consists of distinct but correlated properties of natural systems, I argue that the supposed correlations between these properties are not tight enough to warrant treating and measuring them as a bundle. I additionally argue that deflationary theories of biodiversity don’t go far enough, since a large proportion of what we value in the environment falls outside bounds of what could reasonably be called “diversity”. I suggest that in current scientific practice biodiversity is generally an unnecessary placeholder for biological value of all sorts, and that we are better off eliminating it from conservation biology, or at least drastically reducing its role.  相似文献   

5.
First, a brief history is provided of Popper's views on the status of evolutionary biology as a science. The views of some prominent biologists are then canvassed on the matter of falsifiability and its relation to evolutionary biology. Following that, I argue that Popper's programme of falsifiability does indeed exclude evolutionary biology from within the circumference of genuine science, that Popper's programme is fundamentally incoherent, and that the correction of this incoherence results in a greatly expanded and much more realistic concept of what is empirical, resulting in the inclusion of evolutionary biology. Finally, this expanded concept of empirical is applied to two particular problems in evolutionary biology — viz., the species problem and the debate over the theory of punctuated equilibria — and it is argued that both of them are still mainly metaphysical.  相似文献   

6.
This paper focuses on abstraction as a mode of reasoning that facilitates a productive relationship between philosophy and science. Using examples from evolutionary developmental biology, I argue that there are two areas where abstraction can be relevant to science: reasoning explication and problem clarification. The value of abstraction is characterized in terms of methodology (modeling or data gathering) and epistemology (explanatory evaluation or data interpretation).  相似文献   

7.
In Molecular Models: Philosophical Papers on Molecular Biology, Sahotra Sarkar presents a historical and philosophical analysis of four important themes in philosophy of science that have been influenced by discoveries in molecular biology. These are: reduction, function, information and directed mutation. I argue that there is an important difference between the cases of function and information and the more complex case of scientific reduction. In the former cases it makes sense to taxonomise important variations in scientific and philosophical usage of the terms “function” and “information”. However, the variety of usage of “reduction” across scientific disciplines (and across philosophy of science) makes such taxonomy inappropriate. Sarkar presents reduction as a set of facts about the world that science has discovered, but the facts in question are remarkably disparate; variously semantic, epistemic and ontological. I argue that the more natural conclusion of Sarkar’s analysis is eliminativism about reduction as a scientific concept.  相似文献   

8.
I discuss various reactions to my article "Again, what the philosophy of science is not" [Callebaut (Acta Biotheor 53:92-122 (2005a))], most of which concern the naturalism issue, the place of the philosophy of biology within philosophy of science and philosophy at large, and the proper tasks of the philosophy of biology.  相似文献   

9.
Within modern philosophy of biology the topic of mechanistic explanation has become a central theme for critical discussion. The neo-mechanical philosophers have developed accounts that emphasize intervention and manipulation as the central epistemic tools that allow gaining epistemic access upon the mechanisms and have argued that the processes of inter-field integration across disciplines can be understood through the analysis of mechanisms spanning multiple levels. In this paper I revisit current proposals on mechanistic explanation in order to show some of their limitations when dealing with developmental mechanisms. I basically argue that (i) developmental mechanisms cannot be accommodated within a framework centered upon the mutual manipulation principle, (ii) the distinction between causal relations vs. constitutive relations cannot be easily demarcated within developmental biology and (iii) the notion of "part" underlying the neo-mechanical accounts on explanation is not suitable for developmental biology.  相似文献   

10.
Concern continues to grow over the negative impact of endocrine disrupting chemicals on environmental and public health. The number of identified endocrine disrupting chemicals is increasing, but biological endpoints, experimental design, and approaches for examining and assessing the impact of these chemicals are still debated. Although some workers consider endocrine disruption an "emerging science," I argue here that it is equally, a "merging science" developing in the tradition of integrative biology. Understanding the impact of endocrine disruptors on humans and wildlife is an examination of "context dependent development" and one that Scott Gilbert predicted would require a "new synthesis" or a "revolution" in the biological sciences. Here, I use atrazine as an example to demonstrate the importance of an integrative approach in understanding endocrine disruptors.Atrazine is a potent endocrine disruptor that chemically castrates and feminizes amphibians and other wildlife. These effects are the result of the induction of aromatase, the enzyme that converts androgens to estrogens, and this mechanism has been confirmed in all vertebrate classes examined (fish, amphibians, reptiles, birds, and mammals, including humans). To truly assess the impact of atrazine on amphibians in the wild, diverse fields of study including endocrinology, developmental biology, molecular biology, cellular biology, ecology, and evolutionary biology need to be invoked. To understand fully the long-term impacts on the environment, meteorology, geology, hydrology, chemistry, statistics, mathematics and other disciplines well outside of the biological sciences are required.  相似文献   

11.
Big data biology—bioinformatics, computational biology, systems biology (including ‘omics’), and synthetic biology—raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data ‘speak for themselves?’ I discuss these issues by way of a reflection on Carl Woese’s worry that “a society that permits biology to become an engineering discipline, that allows that science to slip into the role of changing the living world without trying to understand it, is a danger to itself.” And I argue that scientific perspectivism, a philosophical stance represented prominently by Giere, Van Fraassen, and Wimsatt, according to which science cannot as a matter of principle transcend our human perspective, provides the best resources currently at our disposal to tackle many of the philosophical issues implied in the modeling of complex, multilevel/multiscale phenomena.  相似文献   

12.
In this paper, we investigate some theoretical grounds for bridging the gap between an organism-centered biology and the chemical basis of biological explanation, as expressed in the prevailing molecular perspective in biological research. First, we present a brief survey of the role of the organism concept in biological thought. We advance the claim that emergentism (with its fundamental tenets: ontological physicalism, qualitative novelty, property emergence, theory of levels, irreducibility of the emergents, and downward causation) can provide a metaphysical basis for a coherent sort of organicism. Downward causation (DC) is the key notion in emergentist philosophy, as shown by the tension between the aspects of dependence and nonreducibility in the concept of supervenience, preferred by many philosophers to emergence as a basis for nonreductive physicalism. As supervenience physicalism does not lead, arguably, to a stable nonreductive physicalist account, we maintain that a philosophical alternative worthy of investigation is that of a combination of supervenience and property emergence in the formulation of such a stance. Taking as a starting-point O’Connor’s definition of an emergent property, we discuss how a particular interpretation of downward causation (medium DC), inspired by Aristotelian causal modes, results in an explanation of property emergence compatible with both physicalism and non-reductionism. In this account of emergence, one may claim that biology, as a science of living organization, is and remains a science of the organism, even if completely explained by the laws of chemistry. We conclude the paper with a new definition of an emergent property.  相似文献   

13.
The writings of Joseph Henry Woodger (1894–1981) are often taken to exemplify everything that was wrongheaded, misguided, and just plain wrong with early twentieth-century philosophy of biology. Over the years, commentators have said of Woodger: (a) that he was a fervent logical empiricist who tried to impose the explanatory gold standards of physics onto biology, (b) that his philosophical work was completely disconnected from biological science, (c) that he possessed no scientific or philosophical credentials, and (d) that his work was disparaged – if not altogether ignored – by the biologists and philosophers of his era. In this paper, we provide the first systematic examination of Woodger’s oeuvre, and use it to demonstrate that the four preceding claims are false. We argue that Woodger’s ideas have exerted an important influence on biology and philosophy, and submit that the current consensus on his legacy stems from a highly selective reading of his works. By rehabilitating Woodger, we hope to show that there is no good reason to continue to disregard the numerous contributions to the philosophy of biology produced in the decades prior to the professionalization of the discipline.  相似文献   

14.
While conceding that time has proven him wrong in doubting public acceptance of the idea of the "science shops," first sponsored by the Free University of Amsterdam to provide access to technical expertise for customers who could not afford more orthodox services, the author remains convinced that the somewhat analogous concept of "fee for service research," which offers experimental medical treatments for those who can afford to pay for them, is wrong. Such research has been justified as a private sector enterprise that provides patients who are unresponsive to standard forms of therapy with scientifically sound experimental options. However, the objections that such work might be kept secret and not contribute to medical knowledge, and that therapy would be available only to the rich, remain unanswered and pose an insurmountable obstacle to the support of this idea.  相似文献   

15.
Naming biology     
Historians of science recite familiar textbook stories about the origin of the term biology. With this note, Peter McLaughlin shows us antecedents that suggest it is worth thinking more about the traditions from which the familiar usage of the term emerged. We invited McLaughlin to submit this addition to our understanding of the foundation of "biology," and we thank him for his willingness to add to our knowledge in this way.  相似文献   

16.
Mario Bunge   《Journal of Physiology》2007,101(4-6):247-256
The introduction, an imaginary dialogue between a philosopher and a scientist, is followed by a brief discussion of the interactions between science, philosophy, and religion. Next comes an analysis of the three most popular philosophies of mind: classical mind-body dualism, computerism, and psychoneural monism. It is argued that the latter, held by medical psychologists since Hippocrates, and formulated explicitly by Cajal and Hebb, is the philosophy of mind that underlies contemporary cognitive and affective neuroscience. The standard objections to psychoneural monism (or materialism) are examined. Evolutionary psychology, though promissory, is judged to be more fancy than fact at its present stage. The conclusion is that the philosophy of mind is still in a poor shape, but that it can advance if it learns more from the science of mind. It would also help if scientific psychologists were to replace such tacitly dualistic expressions as "organ N instantiates (or subserves) mental function M" with "organ N performs mental function M", just as we say "the legs walk" instead of "walking is subserved by legs," and "the lungs breathe" instead of "the lungs instantiate breathing."  相似文献   

17.
18.
This paper utilizes the framework of Karl Popper’s 3-world ontology to make the case that forensic science is a specialized coding system that establishes meaningful connections between the world of biology (world 1) and the world of human society (world 3). Forensic science is a cross-disciplinary endeavor that uses scientific methods to determine what transpired in a crime so the legal system can determine how to prosecute the offender(s). On a Popperian analysis of forensic science, world 1 consists of evidence gathered at the crime scene, which enables investigators to develop a detailed reconstruction of the incident for consideration under the legal and ethical codes of society, which are products of world 3. Understanding forensic science in this way serves two purposes: first, it extends Marcello Barbieri’s code biology into the realm of philosophical considerations in science, law and ethics; and second, it situates forensic science within the larger context of debates in contemporary philosophy of science.  相似文献   

19.
Which domains of biology do philosophers of biology primarily study? The fact that philosophy of biology has been dominated by an interest for evolutionary biology is widely admitted, but it has not been strictly demonstrated. Here I analyse the topics of all the papers published in Biology & Philosophy, just as the journal celebrates its thirtieth anniversary. I then compare the distribution of biological topics in Biology & Philosophy with that of the scientific journal Proceedings of the National Academy of Science of the USA, focusing on the recent period 2003–2015. This comparison reveals a significant mismatch between the distributions of these topics. I examine plausible explanations for that mismatch. Finally, I argue that many biological topics underrepresented in philosophy of biology raise important philosophical issues and should therefore play a more central role in future philosophy of biology.  相似文献   

20.
At first glance, biology and computer science are diametrically opposed sciences. Biology deals with carbon based life forms shaped by evolution and natural selection. Computer Science deals with electronic machines designed by engineers and guided by mathematical algorithms. In this brief paper, we review biologically inspired computing. We discuss several models of computation which have arisen from various biological studies. We show what these have in common, and conjecture how biology can still suggest answers and models for the next generation of computing problems. We discuss computation and argue that these biologically inspired models do not extend the theoretical limits on computation. We suggest that, in practice, biological models may give more succinct representations of various problems, and we mention a few cases in which biological models have proved useful. We also discuss the reciprocal impact of computer science on biology and cite a few significant contributions to biological science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号