首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Killer immunoglobulin (Ig)-like receptors (KIRs) are the major functional natural killer (NK) cell receptors in human. The presence of KIR genes has only recently been demonstrated in other (non-primate) species, and their expression, genomic arrangement, and function in these species have yet to be investigated. In this study, we describe the KIR gene family in cattle. KIR sequences were amplified from cDNA derived from four animals. Seventeen new sequences were identified in total. Some are alleles of two previously described genes, and the remainder are representative of at least four additional genes. These cDNA data, together with analysis of the cattle genome sequence, confirm that, as in humans, cattle have multiple inhibitory and activating KIR genes, with variable haplotype composition, and putative framework genes. In contrast to human, the majority of the cattle KIR genes encode three Ig-domain KIRs; most of the inhibitory genes encode only one immunoreceptor tyrosine-based inhibitory motif (ITIM), and the activating genes encode molecules with arginine rather than the more usual lysine in the transmembrane domain. A divergent gene, 2DL1, encodes a two Ig-domain KIR with an unusual D0-D2 structure, and a distinct signaling domain with two ITIMs. Similarity to pig and human two Ig-domain (D0-D2) KIRs suggest these may be more related to an ancestral gene than the other cattle KIR genes. Cattle have multiple NKG2A-related genes and at least one Ly49 gene; thus, the data presented here suggest that they have the potential to express more major histocompatibility complex-binding NK receptors than other species.  相似文献   

3.
Lee YC  Chan SH  Ren EC 《Immunogenetics》2008,60(11):645-654
Killer cell immunoglobulin-like receptors (KIR) gene frequencies have been shown to be distinctly different between populations and contribute to functional variation in the immune response. We have investigated KIR gene frequencies in 370 individuals representing three Asian populations in Singapore and report here the distribution of 14 KIR genes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1) with two pseudogenes (2DP1, 3DP1) among Singapore Chinese (n = 210); Singapore Malay (n = 80), and Singapore Indian (n = 80). Four framework genes (KIR3DL3, 3DP1, 2DL4, 3DL2) and a nonframework pseudogene 2DP1 were detected in all samples while KIR2DS2, 2DL2, 2DL5, and 2DS5 had the greatest significant variation across the three populations. Fifteen significant linkage patterns, consistent with associations between genes of A and B haplotypes, were observed. Eighty-four distinct KIR profiles were determined in our populations, 38 of which had not been described in other populations. KIR haplotype studies were performed using nine Singapore Chinese families comprising 34 individuals. All genotypes could be resolved into corresponding pairs of existing haplotypes with eight distinct KIR genotypes and eight different haplotypes. The haplotype A2 with frequency of 63.9% was dominant in Singapore Chinese, comparable to that reported in Korean and Chinese Han. The A haplotypes predominate in Singapore Chinese, with ratio of A to B haplotypes of approximately 3:1. Comparison with KIR frequencies in other populations showed that Singapore Chinese shared similar distributions with Chinese Han, Japanese, and Korean; Singapore Indian was found to be comparable with North Indian Hindus while Singapore Malay resembled the Thai. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The human leukocyte receptor complex (LRC) of Chromosome 19q13.4 encodes polymorphic and highly homologous genes that are expressed by cells of the immune system and regulate their function. There is an enormous diversity at the LRC, most particularly the variable number of killer cell immunoglobulin-like receptor (KIR) genes. KIR have been associated with several disease processes due to their interaction with polymorphic human leukocyte antigen class I molecules. We have assessed haplotype compositions, linkage disequilibrium patterns and allele frequencies in two Caucasoid population samples (n=54, n=100), using a composite of single-nucleotide polymorphism (SNP) markers and high-resolution, allele-specific molecular genotyping. Particular KIR loci segregated with SNP and other markers, forming two blocks that were separated by a region with a greater history of recombination. The KIR haplotype composition and allele frequency distributions were consistent with KIR having been subject to balancing selection (Wattersons F: P=0.001). In contrast, there was a high inter-population heterogeneity measure for the LRC-encoded leukocyte immunoglobulin-like receptor A3 (LILRA3), indicating pathogen-driven disruptive selection (Wrights FST=0.32). An assessment of seven populations representative of African, Asian and Caucasoid ethnic groups (total n=593) provided little evidence for long-range LRC haplotypes. The different natural selection pressures acting on each locus may have contributed to a lack of linkage disequilibrium between them.  相似文献   

5.
6.
Natural killer (NK) immunoglobulin-like receptors (KIRs) are a family of polymorphic receptors which interact with specific motifs on HLA class I molecules and modulate NK cytolytic activity. In this study, we analyzed a recently sequenced subgenomic region on chromosome 19q13.4 containing eight members of the KIR receptor repertoire. Six members are clustered within a 100-kb continuous sequence. These genes include a previously unpublished member of the KIR gene family 2DS6, as well as 2DL1, 2DL4, 3DL1, 2DS4, 3DL2, from centromere to telomere. Two additional KIR genes, KIRCI and 2DL3, which may be located centromeric of this cluster were also analyzed. We show that the KIR genes have undergone repeated gene duplications. Diversification between the genes has occurred postduplication primarily as a result of retroelement indels and gene truncation. Using pre- and postduplication Alu sequences identified within these genes as evolutionary molecular clocks, the evolution and duplication of this gene cluster is estimated to have occurred 30–45 million years ago, during primate evolution. A proposed model of the duplication history of the KIR gene family leading to their present organization is presented. Received: 25 November 1999 / Revised: 10 January 2000  相似文献   

7.
Interactions between inhibitory killer cell immunoglobulin-like receptors (iKIR) and human leukocyte antigen (HLA) class I molecules regulate natural killer (NK) cell responses to eliminate infected and transformed cells while maintaining tolerance to healthy cells. Unlinked polymorphic gene families encode KIR receptors and HLA class I ligands and their independent segregation results in a variable number and type of iKIR + HLA pairs inherited in individuals. The diversity in the co-inheritance of iKIR + HLA pairs and activating KIR (aKIR) genes in 759 unrelated individuals from four ethnic populations was analyzed. Every individual studied inherited a minimum of one iKIR + HLA pair; suggesting that major histocompatibility complex class I-dependent inhibitory KIR signaling is essential for human NK cell function. In contrast, 13.4% of the study group lacked all aKIR genes. Twenty percent of the study group carried only one of the four iKIR + HLA pairs. Interestingly, 3% of the study group carrying only KIR2DL3 + HLA-C1 as an iKIR + HLA pair lacked aKIR genes. These data suggest that a single iKIR can constitute the minimal KIR repertoire for human NK cells. Genotypes carrying an equal number of iKIR + HLA pairs and aKIR genes represented 20% of the study group. The remaining individuals had either a dominant inhibitory KIR genotype (iKIR + HLA > aKIR) or a dominant activating KIR genotype (iKIR + HLA < aKIR). Genotypes encoding these imbalanced inhibitory and activating interactions may contribute to susceptibility or resistance to human diseases.  相似文献   

8.
Natural killer (NK) cells are innate lymphocytes that participate in the early control of viruses and tumors. The function of NK cells is under tight regulation by two complementary inhibitory receptor families that bind to classical and non-classical HLA class I molecules: the CD94/NKG2A receptors and the killer cell immunoglobulin-like receptors (KIRs). In this mini-review, recent data on the structure of human NK cell receptor repertoires and its relation to functional responses and tolerance to self are discussed. We propose that no active selection is required to generate diverse NK cell repertoires characterized by a dominant expression of receptors with specificity for self-HLA class I. Instead, the primary consequence of interactions with HLA class I molecules is a functional tuning of randomly generated NK cell repertoires.  相似文献   

9.
 Human chromosome 19q13.4 has recently been revealed to be a remarkable region harboring multiple receptor genes of the immunoglobulin (Ig) superfamily differentially expressed on hematopoietic cell lineages. Over the past few years, more than 50 cDNAs have been cloned for the natural killer cell inhibitory receptor (KIR) gene family, which possess two or three Ig-like domains in the extracellular region. In this study, using two genomic DNA probes containing intron sequences of genes corresponding to the two- and three-domain types, we applied two-color-fluorescence in situ hybridization on stretched DNA fiber preparations (fiber-FISH). As a result, 11 positions homologous to KIR genes were found as a cluster within a range of approximately 120 kilobases on a chromatin fiber from human chromosome 19. Received: 7 January 1998 / Revised: 25 February 1998  相似文献   

10.
11.
12.
13.
Mouse NKR-P1C(B6) receptor corresponding to NK1.1 alloantigen is one of the most widespread surface markers of mouse NK and NKT cells in C57BL/6 mice detected by monoclonal antibody PK136. Although functional studies revealed the ability of this receptor to activate both natural killing and production of cytokines upon antibody crosslinking, the ligand for NKR-P1C(B6) remains unknown. In order to initiate ligand identification, structural studies, and epitope mapping experiments, we developed a simple and efficient expression and purification protocol allowing to produce large amounts of pure soluble monomeric mouse NKR-P1C(B6). Our protein encompassed approximately half of the stalk region and the entire C-terminal globular ligand binding domain. The identity of protein that was devoid of N-terminal initiation methionine and had all three expected disulfides closed was confirmed using high resolution ion cyclotron resonance mass spectrometry. Protein produced into inclusion bodies in Escherichia coli was efficiently refolded into a unique three dimensional structure as confirmed by NMR using (1)H-(15)N-HSQC spectra of uniformly labeled protein. The exceptional purity of the protein should allow its crystallization and detailed structural investigations, and is a prerequisite for its use as a probe in ligand identification and antibody epitope mapping experiments.  相似文献   

14.
15.
Interleukin-2-inducible T-cell kinase (ITK) and resting lymphocyte kinase (RLK or TXK) are essential mediators of intracellular signaling in both normal and neoplastic T-cells and natural killer (NK) cells. Thus, ITK and RLK inhibitors have therapeutic potential in a number of human autoimmune, inflammatory, and malignant diseases. Here we describe a novel ITK/RLK inhibitor, PRN694, which covalently binds to cysteine residues 442 of ITK and 350 of RLK and blocks kinase activity. Molecular modeling was utilized to design molecules that interact with cysteine while binding to the ATP binding site in the kinase domain. PRN694 exhibits extended target residence time on ITK and RLK and is highly selective for a subset of the TEC kinase family. In vitro cellular assays confirm that PRN694 prevents T-cell receptor- and Fc receptor-induced cellular and molecular activation, inhibits T-cell receptor-induced T-cell proliferation, and blocks proinflammatory cytokine release as well as activation of Th17 cells. Ex vivo assays demonstrate inhibitory activity against T-cell prolymphocytic leukemia cells, and in vivo assays demonstrate durable pharmacodynamic effects on ITK, which reduces an oxazolone-induced delayed type hypersensitivity reaction. These data indicate that PRN694 is a highly selective and potent covalent inhibitor of ITK and RLK, and its extended target residence time enables durable attenuation of effector cells in vitro and in vivo. The results from this study highlight potential applications of this dual inhibitor for the treatment of T-cell- or NK cell-mediated inflammatory, autoimmune, and malignant diseases.  相似文献   

16.
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular‐targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)–redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour‐associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells‐ and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR‐redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR‐redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR‐T and CAR‐NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR‐T and CAR‐NK cells in treating breast cancer.  相似文献   

17.
In mammals, natural killer (NK) cell C-type lectin receptors were encoded in a gene cluster called natural killer gene complex (NKC). The NKC is not reported in chicken yet. Instead, NK receptor genes were found in the major histocompatibility complex. In this study, two novel chicken C-type lectin-like receptor genes were identified in a region on chromosome 1 that is syntenic to mammalian NKC region. The chromosomal locations were validated with fluorescent in situ hybridization. Based on 3D structure modeling, sequence homology, chromosomal location, and phlylogenetic analysis, one receptor is the orthologue of mammalian cluster of differentiation 69 (CD69), and the other is highly homologous to CD94 and NKG2. Like CD94/NKG2 gene found in teleostean fishes, chicken CD94/NKG2 has the features of both human CD94 and NKG2A. Unlike mammalian NKC, these two chicken C-type lectin receptors are not closely linked but separated by 42 million base pairs according to the chicken draft genome sequence. The arrangement of several other genes that are located outside the mammalian NKC is conserved among chicken, human, and mouse. The chicken NK C-type lectin-like receptors in the NKC syntenic region indicate that this chromosomal region existed before the divergence between mammals and aves. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequences have been submitted to the GenBank nucleotide sequence database under the accession number chicken CD69 (DQ156495), CD94/NKG2 (DQ156496), and CD94/NKG2 variant (DQ241793).  相似文献   

18.
Human FcRI (CD89) is a myeloid-specific IgA Fc receptor encoded in the leukocyte receptor complex. Thus far, no gene coding for FcRI has been identified in mice. Here, we show that, unlike mice, rats have the gene (Fcar) coding for FcRI. The rat Fcar gene has an exon-intron structure essentially identical to that of the human counterpart and is encoded in the leukocyte receptor complex on Chromosome 1. Southern blot analysis using the rat Fcar as a probe revealed hybridizing bands in Chinese and Syrian hamsters and gerbils, but not in mice, indicating that Fcar was lost in the lineage leading to mice after the divergence of rats and mice. Identification of FcRI in rats should facilitate the elucidation of the in vivo role of this receptor.The sequence data reported in this paper have been submitted to the DDBJ/EMBL/GenBank databases under accession numbers: AB109766, AB109767, and AB109768  相似文献   

19.
20.
The engagement of natural killer cell immunoglobulin-like receptors (KIRs) with their target ligands, human leukocyte antigen (HLA) molecules, is a critical component of innate immunity. Structurally, KIRs typically have either two (D1-D2) or three (D0-D1-D2) extracellular immunoglobulin domains, with the D1 and D2 domain recognizing the α1 and α2 helices of HLA, respectively, whereas the D0 domain of the KIR3DLs binds a loop region flanking the α1 helix of the HLA molecule. KIR2DL4 is distinct from other KIRs (except KIR2DL5) in that it does not contain a D1 domain and instead has a D0-D2 arrangement. Functionally, KIR2DL4 is also atypical in that, unlike all other KIRs, KIR2DL4 has both activating and inhibitory signaling domains. Here, we determined the 2.8 Å crystal structure of the extracellular domains of KIR2DL4. Structurally, KIR2DL4 is reminiscent of other KIR2DL receptors, with the D0 and D2 adopting the C2-type immunoglobulin fold arranged with an acute elbow angle. However, KIR2DL4 self-associated via the D0 domain in a concentration-dependent manner and was observed as a tetramer in the crystal lattice by size exclusion chromatography, dynamic light scattering, analytical ultracentrifugation, and small angle x-ray scattering experiments. The assignment of residues in the D0 domain to forming the KIR2DL4 tetramer precludes an interaction with HLA akin to that observed for KIR3DL1. Accordingly, no interaction was observed to HLA by direct binding studies. Our data suggest that the unique functional properties of KIR2DL4 may be mediated by self-association of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号