首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants are capable of recognizing the penetrating pathogens and of responding to their attack by the activation of the defense systems. Signal transduction from the receptor to the cell genome is required for this activation. Recently, signal molecules have been found, which are involved in the signal transduction triggered in response to biotic stress. The data accumulated imply the presence of a complex and well-coordinated signal network in plant cells. This net controls plant defense responses to pathogen attacks.  相似文献   

2.
Suresh Babu CV  Joo Song E  Yoo YS 《Biochimie》2006,88(3-4):277-283
Modeling, the heart of systems biology, of complex processes (example: signal transduction) is a wide scientific discipline where many approaches from different areas are confronted with the aim of better understanding, identifying and modeling of complex data coming from various sources. The purpose of this paper is to introduce the basic steps of systems biology view towards signaling pathways, which mainly deals with the computational tools. The paper emphasizes the modeling and simulation approach in the signal transduction pathways using the topologies of the biochemical reactions with an overview of the different types of software platforms. Finally, we demonstrated the epidermal growth factor receptor signaling pathway model as an example to study the growth factor mediated signaling system with biological experiments. This paper will enables new comers to underline the strengths of the computational approaches towards signal transduction, as well as to highlight the systems biology research directions.  相似文献   

3.
4.
For some hormone receptors, the early events of signal transduction depend on their molecular arrangement and interactions at the cell surface. An understanding of the mechanism of signal transduction in general needs a careful analysis of the receptor distribution. Here, we present the first quantitative measurement of epidermal growth factor receptor distribution on A431 cells obtained by scanning fluorescence correlation spectroscopy. Prior to epidermal growth factor binding, the A431 cell membrane presents an average surface density of 7.7-8.4 microclusters/microns 2, each containing an average of 130 receptors.  相似文献   

5.
6.
Estrogens and androgens exert many biological effects that do not require interactions of their receptors with chromosomal DNA. However, it has been a long-standing question how the sex steroid receptors provoke signal transduction outside the nucleus. Here we have shown that epidermal growth factor (EGF) directs sex-specific steroid signaling through Src activation. We have revealed that estrogen (E2)-induced Src activation takes place in, not only plasma, but also endomembranes. This was found ascribed to the existence of EGF and the occurrence of EGF receptor (EGFR)-involved endocytosis of estrogen receptor together with Src. EGFR, estrogen receptor, and Src were found to form a complex upon E2 stimulation. The cell growth of breast cancer-derived MCF-7 cells was found to remarkably increase through the above EGF-involved estrogen-signaling process. In contrast, the androgen 5alpha-dihydrotestosterone-induced Src activation occurs only in the plasma membrane free from the interaction of EGFR with androgen receptor, irrespective of EGF. The cell growth occurred only moderately as a result. The spatial difference in Src activation between E2 and 5alpha-dihydrotestosterone may be responsible for the different extent of observed cell growth.  相似文献   

7.
PI3K/Akt信号通路是由酶联受体介导的信号转导通路,该通路不仅参与多种生长因子、细胞因子和细胞外基质等的信号转导,同时还参与细胞增殖、分化、凋亡和葡萄糖转运等多种细胞功能的调节,特别是在细胞凋亡、细胞存活以及调控细胞糖代谢等方面具有重要作用。本研究综述了PI3K-Akt信号通路的结构组成、通路活化、通信过程、调控机制及其生物学功能等方面的研究进展,为进一步研究PI3K/Akt信号通路的生物学调控作用机制提供启示。  相似文献   

8.
The origin of Metazoa remained--until recently--the most enigmatic of all phylogenetic problems. Sponges [Porifera] as "living fossils", positioned at the base of multicellular animals, have been used to answer basic questions in metazoan evolution by molecular biological techniques. During the last few years, cDNAs/genes coding for informative proteins have been isolated and characterized from sponges, especially from the marine demosponges Suberites domuncula and Geodia cydonium. The analyses of their deduced amino acid sequences allowed a molecular biological resolution of the monophyly of Metazoa. Molecules of the extracellular matrix/basal lamina, with the integrin receptor, fibronectin and galectin as prominent examples, cell-surface receptors (tyrosine kinase receptors), elements of nerve system/sensory cells (metabotropic glutamate receptor), homologs/modules of an immune system [immunoglobulin-like molecules, SRCR- and SCR-repeats, cytokines, (2-5)A synthetase], as well as morphogens (myotrophin) classify the Porifera as true Metazoa. As "living fossils", provided with simple, primordial molecules allowing cell-cell and cell-matrix adhesion, as well as processes of signal transduction as known in a more complex manner from higher Metazoa, sponges also show peculiarities. Tissues of sponges are rich in telomerase activity, suggesting a high plasticity in the determination of cell lineages. It is concluded that molecular biological studies with sponges as models will not only help to understand the evolution to the Metazoa but also the complex, hierarchical regulatory network of cells in higher Metazoa [reviewed in Progress in Molecular Subcellular Biology, vols. 19, 21 (1998) Springer Verlag]. The hypothetical ancestral animal, the Urmetazoa, from which the metazoan lineages diverged (more than 600 MYA), may have had the following characteristics: cell adhesion molecules with intracellular signal transduction pathways, morphogens/growth factors forming gradients, a functional immune system, and a primordial nerve cell/receptor system.  相似文献   

9.
Regulatory interactions among individual receptor-coupled signal transduction systems are critically important for establishing cellular responses in the face of multiple stimuli. In this study, potential regulatory interactions between signal transduction systems activated by growth factor receptors and by G-protein-coupled receptors were examined using human neuroblastoma SH-SY5Y cells which express endogenous epidermal growth factor (EGF) and muscarinic M3 receptors. Activation of muscarinic receptors with carbachol was found to inhibit EGF-induced signaling, including tyrosine phosphorylation of the adaptor protein Cbl and of the EGF receptor, and complex formation between Shc proteins and the EGF receptor and Grb2. Protein kinase C, which is activated by muscarinic M3 receptors, mediated this inhibitory cross-talk. Activation of EGF receptors was found to inhibit muscarinic receptor-induced tyrosine phosphorylation of focal adhesion kinase and paxillin. Reactive oxygen species, which are formed as components of the EGF signaling cascade, mediated this inhibitory cross-talk. These mutual inhibitory interactions demonstrate novel mechanisms for neuronal integration of multiple signals generated by activation of receptors by neurotransmitters and growth factors.  相似文献   

10.
4-hydroxynonenal (HNE), an aldehyde product of membrane lipid peroxidation, has been suggested to mediate a number of oxidative stress-linked pathological events in humans, including cellular growth inhibition and apoptosis induction. Because HNE is potentially reactive to a number of both cell surface and intracellular proteins bearing sulfhydryl, amino and imidazole groups, it seems that there are multiple signal transduction cascades. Here we briefly review the HNE-triggered signal transduction cascades that lead to suppression of cellular functions and to cell death, based mainly on our own recent study results.We first showed that formation of HNE-cell surface protein adducts, which mimicked ligand-cell surface receptor binding, induced activation of receptor-type protein tyrosine kinases such as epithelial growth factor receptor (EGFR) and that this caused growth inhibition through a cascade of activation of EGFR, Shc and ERK. Next, we showed that HNE-mediated scavenging of cellular glutathione led to activation of caspases and to DNA fragmentation through a Fas-independent and mitochondria-linked pro-apoptotic signal pathway. More recently, we have obtained evidence that the HNE-triggered signal cascade for caspase activation encounters complex positive feedback regulatory mechanisms that are linked to the inhibition of anti-apoptotic signals and are dependent on caspase activity. Underlying multiple regulatory mechanisms, including mechanisms of activation of Akt-dephosphorylating PP2A activity, activities of protein tyrosine kinases have been shown to be biphasically controlled by HNE. In addition, we have obtained results suggesting that HNE inhibits phosphorylation of IkappaB, possibly by targeting some elements upstream of IkappaB, which might downregulate the NF-kappaB-mediated cellular responses, including serum deprivation-induced iNOS expression and generation of anti-apoptotic signals.These results suggest that HNE reacts with multiple cell surface and intracellular sites for triggering a network of signal transduction that is ultimately focused on suppression of cellular functions.  相似文献   

11.
TNF-α信号传导通路的分子机理   总被引:6,自引:0,他引:6  
肿瘤坏死因子α(tumor necrosis factor-alpha,TNF-α)是一种具有多效生物学效应的细胞因子.TNF的生物学效应都是通过细胞表面的2种TNF受体(TNFR)引发,其信号传导通路主要包括caspase家族介导的细胞凋亡、衔接蛋白TRAF介导的转录因子NF-κB和JNK蛋白激酶的活化.TNFR1和TNFR2的生物学功能不是独立的,许多生物学活性由二者共同完成.3条信号传导通路之间及各通路内部含有各种调节机制,使TNF的各种生物学功能协调发挥出来.本文评述了3条信号传导通路最新进展、关键激酶的研究状况及其在整个信号网络中的作用机理,如IKK的激活以及重要的信号转导分子RIP、TRAF2、TRUSS的结构、相互作用的方式等  相似文献   

12.
就胰岛素与其受体结合后, 信号传递的过程及参与信号传递的细胞内信号分子进行了综述.胰岛素作为一种重要激素,参与机体的新陈代谢, 调节细胞的生长分化.其发挥生理功能的第一步是与靶细胞膜上的受体相结合, 激活胰岛素受体的酪氨酸激酶活性, 随之磷酸化细胞内的信号分子, 从而使胰岛素的刺激信号转化为细胞反应.  相似文献   

13.
The epidermal growth factor receptor (EGFR/ErbB1/Her1) belongs to the ErbB family of receptor tyrosine kinases (RTKs) and is a key player in the regulation of cell proliferation, differentiation, survival, and migration. Overexpression and mutational changes of EGFR have been identified in a variety of human cancers and the regulation of EGFR signaling plays a critical role in tumor development and progression. Due to its biological significance the EGFR signaling network is a widely used model system for the development of analytical techniques. Novel quantitative proteomics and phosphoproteomics approaches play an important role in the characterization of signaling pathways in a time and stimulus dependent manner. Recent studies discussed in this review provide new insights into different aspects of EGFR signal transduction, such as regulation and dynamics of its phosphorylation sites, association with interaction partners and identification of regulated phosphoproteins. Correlation of data from functional proteomics studies with results from other fields of signal transduction research by systems biology will be necessary to integrate and translate these findings into successful clinical applications.  相似文献   

14.
Zou X  Liu M  Pan Z 《Bio Systems》2008,91(1):245-261
Robustness, the ability to maintain performance in the face of perturbations and uncertainty, is believed to be a necessary property of biological systems. In this paper, we address the issue of robustness in an important signal transduction network--epidermal growth factor receptor (EGFR) network. First, we analyze the robustness in the EGFR signaling network using all rate constants against the Gauss variation which was described as "the reference parameter set" in the previous study [Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B., 1999. Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274, 30169-30181]. The simulation results show that signal time, signal duration and signal amplitude of the EGRR signaling network are relatively not robust against the simultaneous variation of the reference parameter set. Second, robustness is quantified using some statistical quantities. Finally, a multi-objective evolutionary algorithm (MOEA) is presented to search reaction rate constants which optimize the robustness of network and compared with the NSGA-II, which is a representation of a class of modern multi-objective evolutionary algorithms. Our simulation results demonstrate that signal time, signal duration and signal amplitude of the four key components--the most downstream variable in each of the pathways: R-Sh-G-S, R-PLP, R-G-S and the phosphorylated receptor RP in EGRR signaling network for the optimized parameter sets have better robustness than those for the reference parameter set and the NSGA-II. These results can provide valuable insight into experimental designs and the dynamics of the signal-response relationship between the dimerized and activated EGFR and the activation of downstream proteins.  相似文献   

15.
16.
Members of the epidermal growth factor (EGF) family of ligands and their receptors regulate migration and growth of intestinal epithelial cells. However, our understanding of the signal transduction pathways determining these responses is incomplete. In this study we tested the hypothesis that p38 is required for EGF-stimulated intestinal epithelial monolayer restitution. EGF-stimulated migration in a wound closure model required continuous presence of ligand for several hours for maximal response, suggesting a requirement for sustained signal transduction pathway activation. In this regard, prolonged exposure of cells to EGF activated p38 for up to 5 h. Furthermore genetic or pharmacological blockade of p38 signaling inhibited the ability of EGF to accelerate wound closure. Interestingly p38 inhibition was associated with increased EGF-stimulated ERK1/ERK2 phosphorylation and cell proliferation, suggesting that p38 regulates the balance of proliferation/migration signaling in response to EGF receptor activity. Activation of p38 in intestinal epithelial cells through EGF receptor was abolished by blockade of Src family tyrosine kinase signaling but not inhibition of phosphatidylinositol 3-kinase or protein kinase C. Taken together, these data suggest that Src family kinase-dependent p38 activation is a key component of a signaling switch routing EGF-stimulated responses to epithelial cell migration/restitution rather than proliferation during wound closure.  相似文献   

17.
Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and approximately 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multicompartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physiochemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). Our simulations predict that when EGFR is activated with TGF-alpha, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias toward the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor downregulation induced by either EGF or TGF-alpha. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.  相似文献   

18.
Growth factor receptors and their ligands not only regulate normal cell processes but have been also identified as key regulators of human cancer formation. The epidermal growth factor receptor (EGFR/ErbB1/HER1) belongs to the ErbB/HER-family of tyrosine kinase receptors (RTKs). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Several evidences suggest that cooperation of multiple ErbB receptors and ligands is required for the induction of cell transformation. In this respect, EGFR, upon activation, sustains a complex and redundant network of signal transduction pathways with the contribution of other trans-membrane receptors. EGFR has been found to be expressed and altered in a variety of malignancies and clearly it plays a significant role in tumor development and progression, including cell proliferation, regulation of apoptotic cell death, angiogenesis and metastatic spread. Moreover, amplification of the EGFR gene and mutations in the EGFR tyrosine kinase domain have been recently reported in human carcinomas. As a result, investigators have developed approaches to inhibit the effects of EGFR activation, with the aim of blocking tumor growth and invasion. A number of agents targeting EGFR, including specific antibodies directed against its ligand-binding domain and small molecules inhibiting its tyrosine kinase activity are either in clinical trials or are already approved for clinical treatment. This article reviews the EGFR role in carcinogenesis and tumor progression as rational bases for the development of specific therapeutic inhibitors.  相似文献   

19.
Signal transduction through receptor tyrosine kinases is believed to occur mainly at the plasma membrane. Ligands bind to their cognate receptors and trigger autophosphorylation events, which are detected by intracellular signalling molecules. However, ligands, such as epidermal growth factor and insulin, induce the rapid internalization of their receptors into endosomes. Although this event is traditionally thought to attenuate the ligand-induced response, in this article the authors discuss an alternative scenario in which selective and regulated signal transduction from receptor tyrosine kinases occurs within the endosome.  相似文献   

20.
RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号