首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
MOD5, a gene responsible for the modification of A37 to isopentenyl A37 of both cytosolic and mitochondrial tRNAs, encodes two isozymes. Initiation of translation at the first AUG of the MOD5 open reading frame generates delta 2-isopentenyl pyrophosphate:tRNA isopentanyl transferase I (IPPT-I), which is located predominantly, but not exclusively, in the mitochondria. Initiation of translation at a second AUG generates IPPT-II, which modifies cytoplasmic tRNA. IPPT-II is unable to target to mitochondria. The N-terminal sequence present in IPPT-I and absent in IPPT-II is therefore necessary for mitochondrial targeting. In these studies, we fused MOD5 sequences encoding N-terminal regions to genes encoding passenger proteins, pseudomature COXIV and dihydrofolate reductase, and studied the ability of these chimeric proteins to be imported into mitochondria both in vivo and in vitro. We found that the sequences necessary for mitochondrial import, amino acids 1 to 11, are not sufficient for efficient mitochondrial targeting and that at least some of the amino acids shared by IPPT-I and IPPT-II comprise part of the mitochondrial targeting information. We used indirect immunofluorescence and cell fractionation to locate the MOD5 isozymes in yeast. IPPT-I was found in two subcellular compartments: mitochondria and the cytosol. We also found that IPPT-II had two subcellular locations: nuclei and the cytosol. The nuclear location of this protein is surprising because the A37-->isopentenyl A37 modification had been predicted to occur in the cytoplasm. MOD5 is one of the first genes reported to encode isozymes found in three subcellular compartments.  相似文献   

4.
5.
Cloning of a human tRNA isopentenyl transferase   总被引:2,自引:0,他引:2  
Golovko A  Hjälm G  Sitbon F  Nicander B 《Gene》2000,258(1-2):85-93
A cDNA of human origin is shown to encode a tRNA isopentenyl transferase (E.C. 2.5.1.8). Expression of the gene in a Saccharomyces cerevisiae mutant lacking the endogenous tRNA isopentenyl transferase MOD5 resulted in functional complementation and reintroduction of isopentenyladenosine into tRNA. The deduced amino acid sequence contains a number of regions conserved in known tRNA isopentenyl transferases. The similarity to the S. cerevisiae MOD5 protein is 53%, and to the Escherichia coli MiaA protein 47%. The human sequence was found to contain a single C2H2 Zn-finger-like motif, which was detected also in the MOD5 protein, and several putative tRNA transferases located by BLAST searches, but not in prokaryotic homologues.  相似文献   

6.
N6-(delta2-isopentenyl)adenosine was found both as a component of tRNA and as the cytoplasmic mononucleotide in human leukemic lymphoblasts and myeloblasts from peripheral blood and bone marrow samples. This hypermodified nucleotide was also found in the tRNA and as a mononucleotide in human (MRC-5 and KB) and mouse (A9, FLV, LM, and RAG) cell lines. The relative amounts of this hypermodified nucleotide in the tRNA of the cell lines and the human leukemias were similar (the mean value being 0.06 +/- 0.03 mole % of the total tRNA nucleotide content); whereas the amounts occurring as the free cytoplasmic mononucleotide were more varied but still comparable (the mean value being 0.53 +/- .09 mole % of all cytoplasmic nucleotides) for all cells investigated with the notable exception of all normal, diploid cell lines under study (0.04 mole%). A possible relationship of the free cytoplasmic mononucleotide with the nucleotide in the tRNA for control of mammalian cell protein synthesis in vivo was investigated by addition of N6-(delta2-isopentenyl)adenosine to the culture medium. The exogenously added nucleoside caused inhibition of cell growth within 3 h and cell death within 36 h at concentrations as low as 0.4 muM. No comparable effects were seen when adenosine, adenine, or N6-(delta2-isopentenyl)-adenine were added to the cultures. The simultaneous presence of adenosine in cultures containing N6-(delta2-isopentenyl)adenosine did not alter the detrimental effects of the hypermodified nucleoside on cell growth even when the concentration of adenosine was 50-fold that of N6-(delta2-isopentenyl)adenosine. Addition of N6-(delta2-isopentenyl)adenosine to cell cultures caused within the first 6 h a significant reduction in the rates of RNA and protein synthesis; whereas DNA synthesis continued at a rate comparable to control and adenosine-treated cells for 18 h before decreasing.  相似文献   

7.
Escherichia coli mia strains were shown to lack delta 2-isopentenylpyrophosphate transferase activity, the first step in the synthesis of the 2-methylthio derivative of 6-(delta 2-isopentenyl) adenosine (ms2i6A). A double mutant, rpsL (Smp) miaA, was streptomycin dependent. The wild-type miaA gene was cloned by selecting for lambda recombinant bacteriophage which eliminated the streptomycin-dependent phenotype and was subsequently recloned into plasmid vectors. The cloned miaA gene restored the ms2i6A modification to tRNA. The miaA gene mapped to 95 min on the E. coli map, and we propose the order mutL-miaA-hflA-purA.  相似文献   

8.
9.
A nucleosidase activity has been isolated from Lactobacillus acidophilus which rapidly hydrolyses N-6 (delta-2-isopentenyl) adenosine to its corresponding base, N-6(delta-2-isopentenyl) adenine. The activity can be distinguished from the spleen exzyme (EC. 2.4.2.1), a purine nucleoside transferase, on the basis of its substrate specificity, electrophoretic behavior, and nondependence on phosphate. The bacterial enzyme hydrolyzes both inosine and isopentenyl adenosine, giving Km values of 63.3muM and 177 muM respectively. The presence of this enzyme in bacteria counts for the rapid conversion of the parent nucleoside to isopentenyl adenine, which has been observed in these cells. The enzyme thus assumes importance as one of the catabolic activities available to the cell for metabolizing the cytokinin, N-6-(delta-2-isopentenyl) adenosine.  相似文献   

10.
The trm1 mutation of Saccharomyces cerevisiae is a single nuclear mutation that affects a specific base modification of both cytoplasmic and mitochondrial tRNA. Transfer RNA isolated from trm1 cells lacks the modified base N2,N2-dimethylguanosine, and extracts from these cells do not have detectable N2,N2-dimethylguanosine-specific tRNA methyltransferase activity. As part of our efforts to determine how this mutation affects enzyme activities in two different cellular compartments we have isolated the TRM1 locus by genetic complementation. The TRM1 locus restores the N2,N2-dimethylguanosine modification to both cytoplasmic and mitochondrial tRNA in trm1 cells. An open reading frame in this TRM1 gene is essential for complementation of the trm1 phenotype. Expression of this open reading frame in Escherichia coli converts the organism from one that neither makes N2,N2-dimethylguanosine nor has N2,N2-dimethylguanosine-specific tRNA methyltransferase activity into one that does. This result suggests that the TRM1 locus is the structural gene for the tRNA modification enzyme and that both nuclear/cytoplasmic and mitochondrial forms of the methyltransferase are produced from the same gene.  相似文献   

11.
Primary structure of an unusual glycine tRNA UGA suppressor.   总被引:6,自引:1,他引:5       下载免费PDF全文
We have determined the nucleotide sequences of two UGA-suppressing glycine transfer RNAs. The suppressor tRNAs were previously shown to translate both UGA and UGG and to have arisen as a consequence of mutation in glyT, the gene for the GGA/G-reading glycine tRNA of Escherichia coli. In each mutant tRNA, the primary sequence change was the substitution of adenine for cytosine in the 3' position of the anticodon. In addition, a portion of mutant glyT tRNA molecules contained N6-(delta 2-isopentenyl)-2-thiomethyl adenine adjacent to the 3' end of the anticodon (nucleotide 37). The presence or absence of this hypermodification may be a determinant in some of the biological properties of the mutant tRNA.  相似文献   

12.
The specific modification of N6-delta 2-(isopentenyl)adenosine in purified tRNA Ser yeast by mild treatment with KMnO4 and I2 was studied. N6-delta 2-(isopentenyl)adenosine in tRNA SER is specifically modified by iodination, providing us with a suitable method for the quantitative determination of N6-delta 2-(isopentenyl)adenosine in tRNA was found to contain 114 +/- 8 pmol/A260nm unit of N6-delta 2-(isopentenyl)adenosine and gave three labelled fractions on an RPC-5 column. The product obtained after KMnO4 treatment of tRNA Ser was not homogeneous. The enzymatic "reisopentenylation" of KMnO4-treated tRNA Ser resulted in the regeneration of only traces of the original molecule(s). Most of them had been damaged either by the KMnO4 treatment or in the incubation mixture used for "reisopentenylation".  相似文献   

13.
An enzyme has been partially purified from Escherichia coli which catalyzes in vitro the transfer of the Δ2-isopentenyl group from Δ2-isopentenyl pyrophosphate to an adenosine residue in Mycoplasma sp. (Kid) tRNA. The product of the reaction is N6-(Δ2-isopentenyl) adenosine, which is known to be absent in this Mycoplasma tRNA. The enzyme has an approximate molecular weight of 55,000 daltons, requires reduced sulfhydryl groups and a divalent metal ion for full activity, and is specific for tRNA.  相似文献   

14.
The interaction of antibodies directed toward N6-(delta2-isopentenyl)adenosine, i6Ado, or its nucleotide with related bases, nucleosides, nucleotides and purified tRNAs is described. The selectivity of the antibody preparation was tested in inhibition experiments utilizing a sensitive radioimmunoassay to quantitate the binding of [3H]i6Ado to the antibody. Purified tRNAs containing various modified nucleosides adjacent to the 3'-end of the anticodon were tested to provide information about the selectivity of the antibody preparation toward nucleotides in this position of the tRNA chain. Antibodies directed against the nucleotide hapten were used to purify tRNAs which contain i6Ado and to quantitate the amount of that nucleotide. The same order of selectivity was expressed whether the nucleotides were free or in a tRNA molecule. Interaction of the antibody with compounds from the i6Ado family demonstrated dominance of the hydrophobic isopentenyl group and the importance of positional differences of modifications.  相似文献   

15.
The N(6)-(isopentenyl)adenosine (i(6)A) modification of some tRNAs at position A37 is found in all kingdoms and facilitates codon-specific mRNA decoding, but occurs in different subsets of tRNAs in different species. Here we examine yeasts' tRNA isopentenyltransferases (i.e., dimethylallyltransferase, DMATase, members of the Δ(2)-isopentenylpyrophosphate transferase, IPPT superfamily) encoded by tit1(+) in Schizosaccharomyces pombe and MOD5 in Saccharomyces cerevisiae, whose homologs are Escherichia coli miaA, the human tumor suppressor TRIT1, and the Caenorhabditis elegans life-span gene product GRO-1. A major determinant of miaA activity is known to be the single-stranded tRNA sequence, A36A37A38, in a stem-loop. tRNA(Trp)(CCA) from either yeast is a Tit1p substrate, but neither is a Mod5p substrate despite the presence of A36A37A38. We show that Tit1p accommodates a broader range of substrates than Mod5p. tRNA(Trp)(CCA) is distinct from Mod5p substrates, which we sort into two classes based on the presence of G at position 34 and other elements. A single substitution of C34 to G converts tRNA(Trp)(CCA) to a Mod5p substrate in vitro and in vivo, consistent with amino acid contacts to G34 in existing Mod5p-tRNA(Cys)(GCA) crystal structures. Mutation of Mod5p in its G34 recognition loop region debilitates it differentially for its G34 (class I) substrates. Multiple alignments reveal that the G34 recognition loop sequence of Mod5p differs significantly from Tit1p, which more resembles human TRIT1 and other DMATases. We show that TRIT1 can also modify tRNA(Trp)(CCA) consistent with broad recognition similar to Tit1p. This study illustrates previously unappreciated molecular plasticity and biological diversity of the tRNA-isopentenyltransferase system of eukaryotes.  相似文献   

16.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

17.
The modified base N6-(Δ2-isopentenyl)-adenosine (i6A) is missing in all transfer RNAs isolated from the antisuppressor strain sin1 of Schizosaccharomyces pombe. i6A is found adjacent to the 3′ side of the anticodon of several tRNAs of S. pombe. Sequence analysis of tyrosine tRNA from the antisuppressor strain sin1 shows an unmodified adenosine instead of the i6A. i6A-deficient tyrosine tRNA elutes much earlier than wild-type tRNATyr during reverse phase chromatography (RPC-5). Serine tRNA and tryotophan tRNA from the sin1 mutant show a similar shift in the elution profile. We therefore conclude that these two tRNAs are also deficient in i6A. The presence of the antisuppressor mutant sin1 leads to inactivation of the nonsense suppressor sup3-i. As sup3-i is a mutated serine tRNA, we conclude that the loss of the modification i6A on the suppressor tRNA is responsible for the inactivation of sup3-i. Compared to wild type, the growth rate of the sin1 strain is only slightly reduced and the other i6A-deficient tRNAs seem to function normally. We assume that the sin1 mutation affects the structural gene of an enzyme in the isopentenyl pathway, probably the transferase.  相似文献   

18.
Maturation of a hypermodified nucleoside in transfer RNA.   总被引:10,自引:2,他引:8       下载免费PDF全文
E. coli C6 rel- met- cys- was cultured in a fully supplemented medium and in media lacking cysteine or methionine. tRNA isolated from the three cultures containted, respectively, a normal complement of modified nucleosides; a deficiency in thiolated nucleosides and a deficiency in methylated nucleosides. Both sulfur-deficient tRNA and methyl-deficient tRNA contained large amounts of N-6- (delta-2-isopentenyl) adenosine and small amounts of the 2-methylthio derivative. Methyl-deficient tRNA contained, in addition a large amount of a cytokinin active, differently modified nucleoside that is believed to be a sulfur derivative of N6-(delta-2-isopentenyl) adenosine. The structure of this compound is unknown. When methly-deficient tRNA and the precusor the tRNA-Tyr su3-+ A25 were enzymatically methylated in vitro, methyl groups were incorporated into derivatives of isopentenyladenosine. These results indicate that the biosynthesis of the 2-methylthio derivative of isopentenyladenosine may occur in a sequential manner, i.e., thiolation of isopentenyladenosine followed by methylation.  相似文献   

19.
Cytokinins (CKs) are phytohormones that play an important role in plant growth and development. Although the first naturally produced CK, zeatin, was isolated almost four decades ago, no endogenous gene has been shown to produce active CKs in planta. In an activation tagging experiment we have identified a petunia line that showed CK-specific effects including enhanced shooting, reduced apical dominance and delayed senescence and flowering. This phenotype correlated with the enhanced expression of a gene we labelled Sho (Shooting). Sho, which encodes a protein with homology to isopentenyl transferases (IPTs), also causes CK-specific effects when expressed in other plant species. In contrast to the ipt gene from Agrobacterium, which primarily increases zeatin levels, Sho expression in petunia and tobacco especially enhances the levels of certain N6-(delta2-isopentenyl) adenosine (2iP) derivatives. Our data suggest that Sho encodes a plant enzyme whose activity is sufficient to produce active CKs in plants.  相似文献   

20.
Cytokinin oxidase has been partially purified from cultured tobacco tissue. This enzyme converts N6-(delta2-isopentenyl)-adenosine to adenosine. The reaction is inhibited by the two isomers of ribosylzeatin [n6-4-hydroxy-3-methylbut-2-enyl)adenosine]. Trans-ribosylzeatin inhibits the reaction more than the cis-isomer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号