首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleurotus sajor-caju PS2001 was screened in Petri dish plates to assess the dye-decolorizing ability of industrial textile dyes. P. sajor-caju PS2001 was also cultivated in solid-state fermentation containing sawdust of Pinus sp. and wheat bran to obtain the enzymatic extract, showing laccase and manganese-peroxidase activity, which was used to test the capacity to degrade the textile dyes. Additional tests of decolorization were performed in liquid cultures. Anthraquinone-type textile dyes proved to be substrates for the enzymatic system of P. sajor-caju PS2001. Cultures in Petri dish plates showed that the anthraquinone dye Reactive Blue 220 can act as a redox mediator for the enzymatic reactions involved in the decolorization process, and enables the azo dye degradation. Reactive Blue 220 and Acid Blue 280 were completely decolorized in 30 min and 60 min, respectively, during the tests with precipitated enzymatic extract, while the azo dyes showed resistance to degradation. Additionally, in submerged cultures with dyes, veratryl alcohol oxidases and lignin peroxidase activities were observed. These results suggest that the strain P. sajor-caju PS2001 has great potential for use in the bioremediation technology of recalcitrant pollutant such as textile effluents.  相似文献   

2.
Cross-linked magnetic chitosan beads were prepared by phase-inversion technique in the presence of epichlorohydrin under alkaline condition, and used for covalent immobilization of laccase. The activity of the immobilized laccase on the magnetic chitosan was about 260 U (g/dry beads) with an enzyme loading of about 16.33 ± 0.39 mg [(g/dry beads) mg/g]. Kinetic parameters, V max and K m values were determined as 21.7 U/mg protein and 9.4 μM for free enzyme, and 15.6 U/mg protein and 19.7 μM for the immobilized laccase, respectively. The operational and thermal stabilities of the immobilized laccase were improved compared to free counterpart. The immobilized laccase was operated in a batch reactor for the decolorization of reactive dyes from aqueous solution. The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.  相似文献   

3.
A novel laccase was purified and characterized from an edible mushroom Russula virescens by using a protocol that comprised ammonium sulfate saturation, ion-exchange chromatography on diethylaminoethyl-cellulose, carboxymethyl-cellulose and quaternary amine-Sepharose, and finally gel filtration by fast protein liquid chromatography on Superdex 75. The laccase was a monomeric protein with a molecular mass of 69 kDa. Its N-terminal amino acid sequence was AIGPTAELVV which demonstrated partial sequence homology to those of previously published laccases. Six peptide sequences of the purified laccase were determined by liquid chromatography and linear ion trap quadrupole mass spectrometry. Its optimum pH and temperature were 2.2 and 60 °C, respectively. The laccase was inhibited by inhibitors and several metal ions including Cu2+ ions. The laccase degraded various phenolic compounds and the Km toward both 2,7-azinobis (3-ethylbenzothia-zolone-6-sulfonic acid) diammonium salt and dimethylphthalate was 0.1 mM. Moreover, the purified laccase decolorizes a large variety of dyes comprising laboratory dyes such as Bromothymol Blue, Eriochrome black T and Malachite Green and textile dyes such as Reactive Brilliant Blue and Reactive Blue R.  相似文献   

4.
In the present study laccase production potential of a photosynthetic, non nitrogen fixing cyanobacteria Arthrospira maxima (SAE-25780) was investigated for their probable use in synthetic dye decolorization which poses environmental pollution problem in aquatic bodies. A. maxima (SAE-25780) showed a constitutive production of laccase which increased up to 80% in the presence of inducer guaiacol. The optimal condition for laccase was 30 °C, 10 mM sucrose as a carbon source, 10 mM sodium nitrate as a nitrogen source, and 2 mM copper as metal activator. The partially purified laccase showed 84% and 49% decolorization potential for the two anthroquinonic dyes-Reactive Blue 4 and Remazol Brilliant Blue R, respectively (RBBR) within 96 h without any mediator. Therefore the laccase extracted from A. maxima (SAE-25780) can be used efficiently in bioremediation of synthetic dyes from paper, pulp and textile industries.  相似文献   

5.
To obtain better performing laccases for textile dyes decolorization, random mutagenesis of Lac591, a metagenome-derived alkaline laccase, was carried out. After three rounds of error-prone PCR and high-throughput screening by assaying enzymatic activity toward the phenolic substrate 2,6-dimethoxyphenol (2,6-DMP), a mutant (Lac3T93) with remarkably improved enzymatic activity was obtained. Sequence analysis revealed that four amino acid substitutions (N40S, V55A, F62L, and E316V) were accumulated in the Lac3T93. Compared to the wild-type enzyme, the specific activity of Lac3T93 toward 2,6-DMP was increased to 4.8-fold (61.22 U/mg), and its optimal temperature and pH were changed to 60°C and 8.0 from 55°C and 7.5 of the wild-type enzyme, respectively. Furthermore, the degradation ability of Lac3T93 for textile dyes was investigated, and the new variant represented improved decolorization percentage for four industrial dyes with complex phenyl structure (Basic Blue 3, Methylene Blue, Bromophenol Blue, and Crystal Violet) and higher decolorization efficiency for Indigo Carmine than that of the parent enzyme. Furthermore, the decolorization percentage of Lac3T93 for five dyes in the absence of hydroxybenzotrizole (HBT) is clearly higher than those of the wild-type enzyme with 1 mM HBT, and HBT can further improve its decolorization ability.  相似文献   

6.
Synthetic textile dyes are among the most dangerous chemical pollutants released in industrial wastewater streams. Recognizing the importance of reducing the environmental impact of these dyes, the ability of the white rot fungus Phanerochaete chrysosporium to decolorize various textile dyes was investigated. This fungus decolorized 6 of the 14 structurally diverse dyes with varying efficiency (between 14% and 52%). There was no discernable pattern of decolorization even among dyes of the same chemical class, suggesting that attack on the dyes is relatively non-specific. Among the three dyes which showed >40% decolorization, Victoria Blue B (VB) was chosen for further analysis because the ability of the fungus to decolorize VB was nearly independent over a relatively broad concentration range. Blocking lignin peroxidase (LiP) and manganese peroxidase (MnP) production by the fungus did not substantially affect VB decolorization. Inhibition of laccase production by adding various inhibitors to shaken cultures reduced VB decolorization significantly suggesting a role for laccase in VB decolorization. When sodium azide and aminotriazole were used to inhibit endogenous catalase and cytochrome P-450 oxygenase activities, there was 100% and 70% reduction in VB decolorization, respectively. Adding benzoate to trap hydrogen peroxide-derived hydroxyl radicals resulted in 50% decolorization of VB. Boiling the extracellular fluid (ECF) for 30 min resulted in approximately 50% reduction in VB decolorization. Collectively, these data suggest that laccase, and/or oxygenase/oxidase and a heat-stable non-enzymatic factor, but not Lip and MnP, play a role in VB decolorization by P. chrysosporium.  相似文献   

7.
The potential of ligninolytic enzymes, including lignin peroxidase (LiP) as the main enzyme from the spent mushroom substrate of Pleurotus sajor-caju was evaluated for the decolourisation of five dyes from azo and anthraquinone dye groups. Among the azo dyes, reactive black 5 and reactive orange 16 were 84.0 and 80.9% decolourised respectively, after 4 h of incubation with 45 U of LiP as compared to 32.1% decolourisation of disperse blue 79. Among the anthraquinone dyes, disperse red 60 was decolourised to 47.2% after 4 h of incubation with 45 U of LiP as compared to 5.9% decolourisation of disperse blue 56. Increasing the LiP concentration and incubation time had a positive effect on the decolourisation of anthraquinone dyes as compared to azo dyes. A 67.9% decolourisation of synthetic textile waste-water was achieved after 4 h of incubation with 25 U of LiP. Increasing the incubation time significantly increased (P < 0.05) the decolourisation of synthetic textile waste-water. Further, there was a 52.4% reduction in the toxicity of synthetic textile waste-water treated with 55 U of LiP for 4 h. However, only 35.7% reduction in toxicity was achieved when the synthetic textile waste-water was treated with 55 U of LiP for 24 h. In this study, it was shown that the spent mushroom substrate of P. sajor-caju could be a cheap source of ligninolytic enzymes for the decolourisation of dyes in textile industry wastewaters.  相似文献   

8.
Dye decolorizing potential of the white rot fungus Ganoderma lucidum KMK2 was demonstrated for recalcitrant textile dyes. G. lucidum produced laccase as the dominant lignolytic enzyme during solid state fermentation (SSF) of wheat bran (WB), a natural lignocellulosic substrate. Crude enzyme shows excellent decolorization activity to anthraquinone dye Remazol Brilliant Blue R (RBBR) without redox mediator whereas diazo dye Remazol Black-5 (RB-5) requires a redox mediator. Polyacrylamide gel electrophoresis (PAGE) of crude enzyme confirms that the laccase enzyme was the major enzyme involved in decolorization of either dyes. Native and SDS-PAGE indicates that the presence of single laccase with molecular weight of 43 kDa. N-Hydroxybenzotriazole (HBT) at a concentration of 1 mM was found as the best redox mediator. RB-5 (50 mg l−l) was decolorized by 62% and 77.4% within 1 and 2 h, respectively by the crude laccase (25 U ml−1). RBBR (50 mg l−l) was decolorized by 90% within 20 h, however, it was more efficient in presence of HBT showing 92% decolorization within 2 h. Crude laccase showed high thermostability and maximum decolorization activity at 60 °C and pH 4.0. The decolorization was completely inhibited by the laccase inhibitor sodium azide (0.5 mM). Enzyme inactivation method is a good method which averts the undesirable color formation in the reaction mixture after decolorization. High thermostability and efficient decolorization suggest that this crude enzyme could be effectively used to decolorize the synthetic dyes from effluents.  相似文献   

9.
The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.  相似文献   

10.
Summary The potential of a recently isolated wood-degrading fungus, Trichophyton rubrum LSK-27, for effective decolorization of textile azo dyes was evaluated. Within two days of dye addition, the fungus was able to decolorize 83% of Remazol Tiefschwarz, 86% of Remazol Blue RR and 80% of Supranol Turquoise GGL in liquid cultures. The reactive dyes, Remazol Tiefschwarz and Remazol Blue, were removed by fungal biodegradation, while decolorization of the acid dye, Supranol Turquoise GGL, was accomplished mainly by bioadsorption. Therefore the fungus proved to be efficiently capable of both biodegradation and biosorption as the major dye removal mechanisms. The extent of biodegradation was associated with the levels of the extracellular ligninolytic enzymes such as manganese peroxidase and laccase.  相似文献   

11.
The production of ligninolytic enzymes (laccase and Mn-dependent peroxidase) by the white-rot fungus Pleurotus pulmonarius (FR.) Quélet was studied in solid-state cultures using agricultural and food wastes as substrate. The highest activities of laccase were found in wheat bran (2,860?±?250 U/L), pineapple peel (2,450?±?230 U/L), and orange bagasse (2,100?±?270 U/L) cultures, all of them at an initial moisture level of 85 %. The highest activities of Mn peroxidase were obtained in pineapple peel cultures (2,200?±?205 U/L) at an initial moisture level of 75 %. In general, the condition of high initial moisture level (80–90 %) was the best condition for laccase activity, while the best condition for Mn peroxidase activity was cultivation at low initial moisture (50–70 %). Cultures containing high Mn peroxidase activities were more efficient in the decolorization of the industrial dyes remazol brilliant blue R (RBBR), Congo red, methylene blue, and ethyl violet than those containing high laccase activity. Also, crude enzymatic extracts with high Mn peroxidase activity were more efficient in the in vitro decolorization of methylene blue, ethyl violet, and Congo red. The dye RBBR was efficiently decolorized by both crude extracts, rich in Mn peroxidase activity or rich in laccase activity.  相似文献   

12.
Decolorization of textile dyes by a laccase from Trametes modesta immobilized on gamma-aluminum oxide pellets was studied. An enzyme reactor was equipped with various UV/Vis spectroscopic sensors allowing the continuous online monitoring of the decolorization reactions. Decolorization of the dye solutions was followed via an immersion transmission probe. Adsorption processes were observed using diffuse reflectance measurements of the solid carrier material. Generally, immobilization of the laccase does not seem to sterically affect dye decolorization. A range of commercial textile dyes was screened for decolorization and it was found that the application of this enzymatic remediation system is not limited to a certain structural group of dyes. Anthrachinonic dyes (Lanaset Blue 2R, Terasil Pink 2GLA), some azo dyes, Indigo Carmine, and the triphenylmethane dye Crystal Violet were efficiently decolorized. However, the laccase displayed pronounced substrate specificities when a range of structurally related model azodyes was subjected to the biotransformation. Azodyes containing hydroxy groups in ortho or para position relative to the azo bond were preferentially oxidized. The reactor performance was studied more closely using Indigo Carmine.  相似文献   

13.
Growth parameters, ligninolytic enzyme activities and ability to degrade polycyclic aromatic hydrocarbons by the fungus Irpex lacteus were characterized and compared with those of other white rot fungi capable of rapid decolorization of poly R-478 and Remazol Brilliant Blue R dyes. I. lacteus was able to grow on mineral and complex media and efficiently colonized sterile and non-sterile soil by exploratory mycelium growing from a wheat straw inoculum. In shallow stationary cultures growing on high nitrogen mineral medium containing 45 mM ammonium as nitrogen source, the fungus produced lignin peroxidase (LIP), Mn-dependent peroxidase (MnP) and laccase simultaneously, the respective maximal activities of 70, 970 and 36 U/l being attained around day 18. Growing in nitrogen-limited medium (2.4 mM ammonium), no LIP was formed and levels of MnP and laccase decreased significantly. During growth in sterile soil, the fungus synthesized LIP and laccase but not MnP. I. lacteus efficiently removed three- and four-ringed PAHs from liquid media and artificially spiked soil. The variety of ligninolytic enzymes, robust growth, capability of soil colonization and resistance to inhibitory action of soil bacteria make I. lacteus a suitable fungal organism for use in bioremediation. Received: 30 March 2000 / Accepted: 19 May 2000  相似文献   

14.
The potential of three oxidoreductases, a laccase preparation of Pleurotus sajor-caju PS-2001, horseradish peroxidase (HRP) and a microbial peroxidase (MP) was evaluated for the decolorization of disperse textile dyes (CI Disperse Red 343, CI Disperse Red 167 and CI Disperse Blue 148) used in polyester dyeing. Decolorization was studied in aqueous solutions varying in dye concentration, pH, temperature, enzyme concentration and the addition of mediators HBT and syringaldazine. The best conditions found for Disperse Red 343 with laccase, HRP and MP were: 15 mg L?1 dye concentration, 50°C, pH 3.0 for laccase and pH 5.0 for peroxidases. Without mediator, the highest decolorizaton results (38.5% and 58.6%) were achieved with the highest tested concentrations of laccase (10 U mL?1) and HRP (89.7 U mL?1), respectively, but no significant difference in decolorization was found for the tested MP concentrations (29.9–89.7 U mL‐1). HBT or syringaldazine increased decolorization with peroxidases significantly, but no effect was observed for the laccase. Decolorization of Disperse Red 167 (up to 15%) and Disperse Blue 148 (up to 25%) was much lower than of Disperse Red 343. With respect to enzyme concentration, the use of mediator and under the selected test conditions the laccase of P. sajor-caju PS-2001 turned out to be more efficient in disperse dye decolorization, than peroxidases HRP and MP.  相似文献   

15.
The effect of different carbon, nitrogen sources and inducers on growth and ligninolytic activity by Morel mushroom Morchella crassipes was investigated. The maximum growth was observed in mineral salts broth containing glucose as the carbon source and sodium nitrate as the nitrogen source. Among the inducers, chemical inducers inhibited the growth whereas in natural substrates, growth was not affected much. Manganese peroxidase and lignin peroxidase activity were not detected in the medium with different carbon and nitrogen sources, whereas laccase activity varied depending on carbon source (0.7–3.48 U/ml). Among the inducers, natural inducers resulted in an increase in the enzyme activities. Maximum laccase activity was observed in rice straw (12. 6 U/ml) followed by ABTS (11.6 U/ml); Manganese peroxidase activity was maximum in rice straw (14.32 U/l) wheat straw (12.16 U/l) and phenol red (15 U/l) as the inducers, whereas for Lignin peroxidase activity, rice straw (22 U/l), wheat straw (16 U/l) and veratrylalcohol (20 U/l) served as the best inducers.  相似文献   

16.
Trametes trogii BAFC 463 culture fluids (containing 110 U ml−1 laccase; 0.94 U ml−1 manganese peroxidase), as well as its purified laccase were capable of decolorizing azoic, indigoid, triphenylmethane, anthraquinonic and heterocyclic dyes, in the absence of redox mediators. Six dyes: RBBR, Indigo Carmine, Xylidine, Malachite Green, Gentian Violet and Bromophenol Blue were almost completely degraded (more than 85% decolorization after 1 d) by either laccase or T. trogii itself in culture, proving the role of the enzyme in dye decolorization. The purified laccase also decolorized 65% of Fast Blue RR and 30% of Azure B and Methylene Blue after 24 h. The use of redox mediators significantly increased the decolorization rates (90% decolorization of Azure B after 1 h). 1-hydroxybenzotriazole resulted the best redox mediator, but the natural mediator p-hydroxybenzoic acid also demonstrated its efficiency for dye decolorization. Due to their ability to decolorize recalcitrant dyes without addition of redox mediators, high laccase activities, high thermostability and efficient decolorization at 70 °C and pH 7.0, even in the presence of high concentrations of heavy metals (100 mM Cu+2, Pb+2 or Cd+2) or in a synthetic dyebath, T. trogii culture fluids could be effectively used to decolorize synthetic dyes from effluents.  相似文献   

17.
A pure fungal laccase, obtained from a commercial formulation used in the textile industry, did not decolourize Remazol Brilliant Blue R (RBBR). Decolourization was only observed when a small molecular weight redox mediator was added together with the laccase. Under the conditions specified, violuric acid (5.7 mM) was the most effective mediator studied and almost complete decolourization was observed within 20 min. In contrast, 1-hydroxybenzotriazole (HOBT, 11 mM) decolourized RBBR at about a two-fold slower rate and to a lesser extent. Also, higher concentrations of HOBT were inhibitory which could be due to inactivation of laccase by the toxic HOBT radical. The commercial laccase formulation that contained phenothiazine-10-propionic acid as the mediator was least effective, giving 30% decolourization under equivalent conditions. We suggest that similar laccase plus mediator systems could be used for the detoxification of related anthraquinone textile dyes.  相似文献   

18.
One of the most common dyeing problems of textile industries is uneven and faulty dyeing over the finished quality of fabrics due to different reasons. These problems are usually tackled through chemical degradation in which uneven and faulty dye is removed from the surface of fiber but fabric quality is compromised. Chemical process also reduces the strength of the fabric and durability of textile material by reduction in reactive dye ability. The fabric cannot be reused due to the reduced strength. To overcome above mentioned problem, biological method of stripping in which enzymes produced by different micro-organisms are used. This process has no harmful effect on the fabric and is safe for environment. In this research work reactive blue 21 dye with 0.5, 2 and 4% shade strengths was used to dye cotton fabric. The Ganoderma lucidum fungal strains were mutated by UV mutagen, and five were selected for further processing. These mutant strains were grown at temperature ranges (20 °C to 40 °C); pH(3–5); inoculum size(1–5 mL) and fermentation time (3–15 days) . The required nutrients media to produce the ligninolytic enzymes was added to the flask. The strain which gave the fast decolourization results was selected for further optimization. Optimization was done by observing the variables: incubation time 12 days, pH 4, temperature 30 °C, and inoculum size 3 mL by applying Response Surface Methodology (RSM) in Central Composite Design (CCD). During the process of fabric color stripping, the enzyme assay revealed that the respective mutant UV-60 strain produced active enzymes with their Vmax, Mnp (427U/mL), LiP (785U/mL), and Lac (75 U/mL) enzymes decolorized 89% of the dye which is 25% more than the parent strain and also the production of enzyme is Mnp (344U/mL), LiP (693U/mL), and Lac (59 U/mL) enzymes which is lower than mutant strain.  相似文献   

19.
Guo M  Lu F  Liu M  Li T  Pu J  Wang N  Liang P  Zhang C 《Biotechnology letters》2008,30(12):2091-2096
A recombinant laccase from Trametes versicolor in Pichia methanolica was produced constitutively in a defined medium. The recombinant laccase was purified using ultrafiltration, anion-exchange chromatography, and gel filtration. The molecular weight of the purified laccase was estimated as 64 kDa by SDS-PAGE. The purified recombinant laccase decolorized more than 90% of Remazol Brilliant Blue R (RBBR) initially at 80 mg l−1 after 16 h at 45°C and pH 5 when 25 U laccase ml−1 was used. The purified recombinant laccase could efficiently decolorize RBBR without additional redox mediators.  相似文献   

20.
In this study, Bacillus sphaericus NRC 69 was grown in culture media, in which 12 agricultural wastes were tested as the main carbon, nitrogen and energy sources under solid state fermentation. Of the 12 tested agricultural by-products, wheat bran was the most efficient substrate for the production of B. sphaericus mosquitocidal toxins against larvae of Culex pipiens (LC50 1.2 ppm). Mixtures of tested agricultural wastes separately with wheat bran enhanced the produced toxicity several folds and decreased LC50 between 3.7- and 50-fold in comparison with that of agricultural wastes without mixing. The toxicity of B. sphaericus grown in wheat bran/rice hull at 8/2 (g/g) and wheat bran/barley straw at 1/4 (g/g) showed the same toxicity as that in wheat bran medium (LC50 decreased 17- and 16-fold, in comparison with that in rice hull or barely straw media, respectively). In wheat bran medium, the maximum toxicity of the tested organism obtained at 50% moisture content, inoculum size 84 × 106 CFU/g wheat bran and incubation for 6 days at 30°C. Addition of cheese whey permeate at 10% to wheat bran medium enhanced the toxicity of B. sphaericus NRC 69 about 46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号