首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific set of regulatory proteins: cofactors A–E. We identified the fission yeast cofactor: the orthologue of cofactor C, Tbc1. In addition to its roles in tubulin folding, Tbc1 acts as a GAP in regulating Alp41/Arl2, a highly conserved small GTPase. Of interest, the expression of GDP- or GTP-bound Alp41 showed the identical microtubule loss phenotype, suggesting that continuous cycling between these forms is important for its functions. In addition, we found that Alp41 interacts with Alp1D, the orthologue of cofactor D, specifically when in the GDP-bound form. Intriguingly, Alp1D colocalizes with microtubules when in excess, eventually leading to depolymerization, which is sequestered by co-overproducing GDP-bound Alp41. We present a model of the final stages of the tubulin cofactor pathway that includes a dual role for both Tbc1 and Alp1D in opposing regulation of the microtubule.  相似文献   

2.
Programmed cell death protein 5 (PDCD5) has been proposed to act as a pro-apoptotic factor and tumor suppressor. However, the mechanisms underlying its apoptotic function are largely unknown. A proteomics search for binding partners of phosducin-like protein, a co-chaperone for the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT), revealed a robust interaction between PDCD5 and CCT. PDCD5 formed a complex with CCT and β-tubulin, a key CCT-folding substrate, and specifically inhibited β-tubulin folding. Cryo-electron microscopy studies of the PDCD5·CCT complex suggested a possible mechanism of inhibition of β-tubulin folding. PDCD5 bound the apical domain of the CCTβ subunit, projecting above the folding cavity without entering it. Like PDCD5, β-tubulin also interacts with the CCTβ apical domain, but a second site is found at the sensor loop deep within the folding cavity. These orientations of PDCD5 and β-tubulin suggest that PDCD5 sterically interferes with β-tubulin binding to the CCTβ apical domain and inhibits β-tubulin folding. Given the importance of tubulins in cell division and proliferation, PDCD5 might exert its apoptotic function at least in part through inhibition of β-tubulin folding.  相似文献   

3.
The alpha- and beta-tubulin folding pathways   总被引:4,自引:0,他引:4  
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.  相似文献   

4.
In vivo, many proteins must interact with molecular chaperones to attain their native conformation. In the case of tubulin, newly synthesized alpha- and beta-subunits are partially folded by cytosolic chaperonin, a double-toroidal ATPase with homologs in all kingdoms of life and in most cellular compartments. alpha- and beta-tubulin folding intermediates are then brought together by tubulin-specific chaperone proteins (named cofactors A-E) in a cofactor-containing supercomplex with GTPase activity. Here we show that tubulin subunit exchange can only occur by passage through this supercomplex, thus defining it as a dimer-making machine. We also show that hydrolysis of GTP by beta-tubulin in the supercomplex acts as a switch for the release of native tubulin heterodimer. In this folding reaction and in the related reaction of tubulin-folding cofactors with native tubulin, the cofactors behave as GTPase-activating proteins, stimulating the GTP-binding protein beta-tubulin to hydrolyze its GTP.  相似文献   

5.
Microtubules are highly dynamic structures, composed of alpha/beta-tubulin heterodimers. Biosynthesis of the functional dimer involves the participation of several chaperones, termed cofactors A-E, that act on folding intermediates downstream of the cytosolic chaperonin CCT (1, 2). We show that cofactor D is also a centrosomal protein and that overexpression of either the full-length protein or either of two centrosome localization domains leads to the loss of anchoring of the gamma-tubulin ring complex and of nucleation of microtubule growth at centrosomes. In contrast, depletion of cofactor D by short interfering RNA results in mitotic spindle defects. Because none of these changes in cofactor D activity produced a change in the levels of alpha-or beta-tubulin, we conclude that these newly discovered functions for cofactor D are distinct from its previously described role in tubulin folding. Thus, we describe a new role for cofactor D at centrosomes that is important to its function in polymerization of tubulin and organization of the mitotic spindle.  相似文献   

6.
The yeast protein Rbl2p suppresses the deleterious effects of excess β-tubulin as efficiently as does α-tubulin. Both in vivo and in vitro, Rbl2p forms a complex with β-tubulin that does not contain α-tubulin, thus defining a second pool of β-tubulin in the cell. Formation of the complex depends upon the conformation of β-tubulin. Newly synthesized β-tubulin can bind to Rbl2p before it binds to α-tubulin. Rbl2p can also bind β-tubulin from the α/β-tubulin heterodimer, apparently by competing with α-tubulin. The Rbl2p–β-tubulin complex has a half-life of ~2.5 h and is less stable than the α/β-tubulin heterodimer. The results of our experiments explain both how excess Rbl2p can rescue cells overexpressing β-tubulin and how it can be deleterious in a wild-type background. They also suggest that the Rbl2p–β-tubulin complex is part of a cellular mechanism for regulating the levels and dimerization of tubulin chains.  相似文献   

7.
Capping protein (CP) is a heterodimer that regulates actin assembly by binding to the barbed end of F-actin. In cultured nonneuronal cells, each CP subunit plays a critical role in the organization and dynamics of lamellipodia and filopodia. Mutations in either α or β CP subunit result in retinal degeneration in Drosophila. However, the function of CP subunits in mammalian neurons remains unclear. Here, we investigate the role of the β CP subunit expressed in the brain, Capzb2, in growth cone morphology and neurite outgrowth. We found that silencing Capzb2 in hippocampal neurons resulted in short neurites and misshapen growth cones in which microtubules overgrew into the periphery and completely overlapped with F-actin. In searching for the mechanisms underlying these cytoskeletal abnormalities, we identified β-tubulin as a novel binding partner of Capzb2 and demonstrated that Capzb2 decreases the rate and the extent of tubulin polymerization in vitro. We mapped the region of Capzb2 that was required for the subunit to interact with β-tubulin and inhibit microtubule polymerization. A mutant Capzb2 lacking this region was able to bind F-actin and form a CP heterodimer with α2-subunit. However, this mutant was unable to rescue the growth cone and neurite outgrowth phenotypes caused by Capzb2 knockdown. Together, these data suggest that Capzb2 plays an important role in growth cone formation and neurite outgrowth and that the underlying mechanism may involve direct interaction between Capzb2 and microtubules.  相似文献   

8.
Microtubule-organizing centers recruit α- and β-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A–E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into “centriolar rosettes”. These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.  相似文献   

9.
The quadriflagellate alga polytomella agilis contains several α-tubulins with distinct isoelectric points (McKeithan, T.W., and J.L. Rosenbaum, 1981, J. Cell Biol., 91:352-360). While α-3 is the major component in flagella, α-1 predominates in cytoskeletal microtubules. For determination of whether the differences in α- tubulins are due to distinct genes or to posttranslational modification of a common α-tubulin precursor, poly A+ RNA was isolated from deflagellated and control (nonregenerating) cells and translated in vitro. Approximately twice as much α-1 was synthesized using RNA from deflagellated as compared to control cells; however, there was no detectable synthesis in vitro of α-3 in either. These results suggest that α -3 tubulin is formed in vivo by posttranslational modification of a form co- migrating with, and possibly identical to, cytoskeletal α-tubulin. In the related alga chlamydomonas reinhardii deflagellation greatly stimulates synthesis of tubulin and tubulin mRNA. As in polytomella, the principal α-tubulin synthesized both in vivo and in vitro following deflagellation in chlamydomonas is more basic than the major α-tubulin and appears to correspond to α-1 tubulin in polytomella. The conversion of α-1 to α-3 receives additional support from in vivo labeling and pulse-chase experiments. In addition, in both polytomella and chlamydomonas some conversion of α-1 to α-3 appears to occur even when protein synthesis is inhibited.  相似文献   

10.
The folding of native tubulin involves at least seven different chaperone proteins: prefoldin, the cytosolic chaperonin CCT and five tubulin-specific chaperone proteins named cofactors A-E. The structure of the yeast homolog of cofactor A, Rbl2p, shows it to be a dimer with largely hydrophilic surfaces, reflecting the fact that it interacts with quasi-native, not unfolded, beta-tubulin.  相似文献   

11.
Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated α-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the α and β subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL–tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of α-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between α- and β-tubulin, and between different post-translationally modified forms of α-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton.  相似文献   

12.
Cellular α-tubulin can bear various carboxy-terminal sequences: full-length tubulin arising from gene neosynthesis is tyrosinated, and two truncated variants, corresponding to detyrosinated and Δ2 α‑tubulin, result from the sequential cleavage of one or two C-terminal residues, respectively. Here, by using a novel antibody named 3EG that is highly specific to the –EEEG C-terminal sequence, we demonstrate the occurrence in neuronal tissues of a new αΔ3‑tubulin variant corresponding to α1A/B‑tubulin deleted of its last three residues (EEY). αΔ3‑tubulin has a specific distribution pattern: its quantity in the brain is similar to that of αΔ2-tubulin around birth but is much lower in adult tissue. This truncated α1A/B-tubulin variant can be generated from αΔ2-tubulin by the deglutamylases CCP1, CCP4, CCP5, and CCP6 but not by CCP2 and CCP3. Moreover, using 3EG antibody, we identify a C‑terminally truncated β-tubulin form with the same –EEEG C-terminal sequence. Using mass spectrometry, we demonstrate that β2A/B-tubulin is modified by truncation of the four C-terminal residues (EDEA). We show that this newly identified βΔ4-tubulin is ubiquitously present in cells and tissues and that its level is constant throughout the cell cycle. These new C-terminally truncated α- and β-tubulin variants, both ending with –EEEG sequence, are expected to regulate microtubule physiology. Of interest, the αΔ3-tubulin seems to be related to dynamic microtubules, resembling tyrosinated-tubulin rather than the other truncated variants, and may have critical function(s) in neuronal development.  相似文献   

13.
《The Journal of cell biology》1993,122(6):1301-1310
The folding of actin and tubulin is mediated via interaction with a heteromeric toroidal complex (cytoplasmic chaperonin) that hydrolyzes ATP as part of the reaction whereby native proteins are ultimately released. Vertebrate actin-related protein (actin-RPV) (also termed centractin) and gamma-tubulin are two proteins that are distantly related to actin and tubulin, respectively: gamma-tubulin is exclusively located at the centrosome, while actin-RPV is conspicuously abundant at the same site. Here we show that actin-RPV and gamma- tubulin are both folded via interaction with the same chaperonin that mediates the folding of beta-actin and alpha- and beta-tubulin. In each case, the unfolded polypeptide forms a binary complex with cytoplasmic chaperonin and is released as a soluble, monomeric protein in the presence of Mg-ATP and the presence or absence of Mg-GTP. In contrast to alpha- and beta-tubulin, the folding of gamma-tubulin does not require the presence of cofactors in addition to chaperonin itself. Monomeric actin-RPV produced in in vitro folding reactions cocycles efficiently with native brain actin, while in vitro folded gamma- tubulin binds to polymerized microtubules in a manner consistent with interaction with microtubule ends. Both monomeric actin-RPV and gamma- tubulin bind to columns of immobilized nucleotide: monomeric actin-RPV has no marked preference for ATP or GTP, while gamma-tubulin shows some preference for GTP binding. We show that actin-RPV and gamma-tubulin compete with one another, and with beta-actin or alpha-tubulin, for binary complex formation with cytoplasmic chaperonin.  相似文献   

14.
Cytosolic carboxypeptidase 5 (CCP5) is a member of a subfamily of enzymes that cleave C-terminal and/or side chain amino acids from tubulin. CCP5 was proposed to selectively cleave the branch point of glutamylated tubulin, based on studies involving overexpression of CCP5 in cell lines and detection of tubulin forms with antisera. In the present study, we examined the activity of purified CCP5 toward synthetic peptides as well as soluble α- and β-tubulin and paclitaxel-stabilized microtubules using a combination of antisera and mass spectrometry to detect the products. Mouse CCP5 removes multiple glutamate residues and the branch point glutamate from the side chains of porcine brain α- and β-tubulin. In addition, CCP5 excised C-terminal glutamates from detyrosinated α-tubulin. The enzyme also removed multiple glutamate residues from side chains and C termini of paclitaxel-stabilized microtubules. CCP5 both shortens and removes side chain glutamates from synthetic peptides corresponding to the C-terminal region of β3-tubulin, whereas cytosolic carboxypeptidase 1 shortens the side chain without cleaving the peptides'' γ-linked residues. The rate of cleavage of α linkages by CCP5 is considerably slower than that of removal of a single γ-linked glutamate residue. Collectively, our data show that CCP5 functions as a dual-functional deglutamylase cleaving both α- and γ-linked glutamate from tubulin.  相似文献   

15.
The alga polytomella contains several organelles composed of microtubules, including four flagella and hundreds of cytoskeletal microtubules. Brown and co-workers have shown (1976. J. Cell Biol. 69:6-125; 1978, Exp. Cell Res. 117: 313-324) that the flagella could be removed and the cytoskeletans dissociated, and that both structures could partially regenerate in the absence of protein synthesis. Because of this, and because both the flagella and the cytoskeletons can be isolated intact, this organism is particularly suitable for studying tubulin heterogeneity and the incorporation of specific tubulins into different microtubule-containing organelles in the same cell. In order to define the different species of tubulin in polytonella cytoplasm, a (35)S- labeled cytoplasmic fraction was subjected to two cycles of assembly and disassembly in the presence of unlabeled brain tubulin. Comparison of the labeled polytomella cytoplasmic tubulin obtained by this procedure with the tubulin of isolated polytomella flagella by two-dimensional gel electrophoresis showed that, whereas the β-tubulin from both cytoplasmic and flagellar tubulin samples comigrated, the two α-tubulins had distinctly different isoelectic points. As a second method of isolating tubulin from the cytoplasm, cells were gently lysed with detergent and intact cytoskeletons obtained. When these cytoskeletons were exposed to cold temperature, the proteins that were released were found to be highly enriched in tubulin; this tubulin, by itself, could be assembled into microtubules in vitro. The predominant α-tubulin of this in vitro- assembled cytoskeletal tubulin corresponded to the major cytoplasmic α-tubulin obtained by coassembly of labeled polytomella cytoplasmic extract with brain tubulin and was quite distinct from the α-tubulin of purified flagella. These results clearly show that two different microtubule-containing organelles from the same cell are composed of distinct tubulins.  相似文献   

16.
Centrosome-dependent microtubule nucleation involves the interaction of tubulin subunits with pericentriolar material. To study the biochemical and structural basis of centrosome-dependent microtubule nucleation, centrosomes capable of organizing microtubules into astral arrays were isolated from parthenogenetically activated Spisula solidissima oocytes. Intermediate voltage electron microscopy tomography revealed that each centrosome was composed of a single centriole surrounded by pericentriolar material that was studded with ring-shaped structures ~25 nm in diameter and <25 nm in length. A number of proteins copurified with centrosomes including: (a) proteins that contained M-phase–specific phosphoepitopes (MPM-2), (b) α-, β-, and γ-tubulins, (c) actin, and (d) three low molecular weight proteins of <20 kD. γ-Tubulin was not an MPM-2 phosphoprotein and was the most abundant form of tubulin in centrosomes. Relatively little α- or β-tubulin copurified with centrosomes, and the ratio of α- to β-tubulin in centrosomes was not 1:1 as expected, but rather 1:4.6, suggesting that centrosomes contain β-tubulin that is not dimerized with α-tubulin.  相似文献   

17.
Mutations in the genes that encode α- and β-tubulin underlie many neurological diseases, most notably malformations in cortical development. In addition to revealing the molecular basis for disease etiology, studying such mutations can provide insight into microtubule function and the role of the large family of microtubule effectors. In this study, we use budding yeast to model one such mutation—Gly436Arg in α-tubulin, which is causative of malformations in cortical development—in order to understand how it impacts microtubule function in a simple eukaryotic system. Using a combination of in vitro and in vivo methodologies, including live cell imaging and electron tomography, we find that the mutant tubulin is incorporated into microtubules, causes a shift in α-tubulin isotype usage, and dramatically enhances dynein activity, which leads to spindle-positioning defects. We find that the basis for the latter phenotype is an impaired interaction between She1—a dynein inhibitor—and the mutant microtubules. In addition to revealing the natural balance of α-tubulin isotype utilization in cells, our results provide evidence of an impaired interaction between microtubules and a dynein regulator as a consequence of a tubulin mutation and sheds light on a mechanism that may be causative of neurodevelopmental diseases.  相似文献   

18.
Tubulin Isotypes in Rye Roots Are Altered during Cold Acclimation   总被引:7,自引:4,他引:3       下载免费PDF全文
The cold stability of cortical microtubules in root-tip cells of winter rye (Secale cereale L. cv Puma) is altered by growth temperature (GP Kerr, JV Carter [1990] Plant Physiol 93:77-82). One hypothesis for the basis of this alteration is that different tubulin isotypes are present at different growth temperatures, and that the cold stability of microtubules is affected by these isotypic differences. We have explored the first part of this hypothesis by comparing protein extracts from roots of seedlings grown for 2 days at 22°C (nonacclimated) or for an additional 2 or 4 days at 4°C (cold-acclimated). Immunoblots of two-dimensional polyacrylamide gels were probed with monoclonal antibodies to α- and β-tubulin. At least six α- and seven β-tubulins were present in the extracts from both the nonacclimated and cold-acclimated roots. Changes in electrophoretic mobility and isotype number of both α- and β-tubulin were observed after only 2 days at 4°C. Further changes in tubulin were observed after 4 days at 4°C. Changes in α-tubulin were more pronounced than those in β-tubulin.  相似文献   

19.
The cytoplasmic chaperonin containing TCP-1 (CCT) plays a critically important role in the folding and biogenesis of many cytoskeletal proteins, including tubulin and actin. For marine ectotherms, the chronically cold Southern Ocean (−2 to +2°C) poses energetic challenges to protein folding, both at the level of substrate proteins and with respect to the chaperonin/chaperone folding system. Here we report the partial functional and structural characterization of CCT from an Antarctic notothenioid fish, Notothenia coriiceps. We find that the mechanism of folding by the Antarctic fish CCT differed from that of mammalian CCT: (1) the former complex was able to bind denatured β-tubulin but (2) when reconstituted with rabbit Cofactor A, failed to release the protein to yield the tubulin/cofactor intermediate. Moreover, the amino acid sequences of the N. coriiceps CCT β and θ chains contained residue substitutions in the equatorial, apical, and intermediate domains that would be expected to increase the flexibility of the subunits, thus facilitating function of the chaperonin in an energy poor environment. Our work contributes to the growing realization that protein function in cold-adapted organisms reflects a delicate balance between the necessity of structural flexibility for catalytic activity and the concomitant hazard of cold-induced denaturation.  相似文献   

20.
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced α-tubulin acetylation in human colonocytes and mouse intestine. Fractionation analysis demonstrated that toxin A-induced α-tubulin deacetylation yielded monomeric tubulin, indicating the presence of microtubule depolymerization. Inhibition of the glucosyltransferase activity against Rho proteins of toxin A by UDP-2′,3′-dialdehyde significantly abrogated toxin A-induced α-tubulin deacetylation. In colonocytes treated with trichostatin A (TSA), an inhibitor of the HDAC6 tubulin deacetylase, toxin A-induced α-tubulin deacetylation and loss of tight junction were completely blocked. Administration of TSA also attenuated proinflammatory cytokine production, mucosal damage, and epithelial cell apoptosis in mouse intestine exposed to toxin A. These results suggest that toxin A causes microtubule depolymerization by activation of HDAC6-mediated tubulin deacetylation. Indeed, blockage of HDAC6 by TSA markedly attenuates α-tubulin deacetylation, proinflammatory cytokine production, and mucosal damage in a toxin A-induced mouse enteritis model. Tubulin deacetylation is an important component of the intestinal inflammatory cascade following toxin A-mediated Rho inactivation in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号