首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of biomechanics》2014,47(16):3903-3908
Intracellular calcium transient ([Ca2+]i transient) induced by fluid shear stress (FSS) plays an important role in osteoblastic mechanotransduction. Changes of membrane potential usually affect [Ca2+]i level. Here, we sought to determine whether there was a relationship between membrane potential and FSS-induced [Ca2+]i transient in osteoblasts. Fluorescent dyes DiBAC4(3) and fura-2 AM were respectively used to detect membrane potential and [Ca2+]i. Our results showed that FSS firstly induced depolarization of membrane potential and then a transient rising of [Ca2+]i in osteoblasts. There was a same threshold for FSS to induce depolarization of membrane potential and [Ca2+]i transients. Replacing extracellular Na+ with tetraethylammonium or blocking stretch-activated channels (SACs) with gadolinium both effectively inhibited FSS-induced membrane depolarization and [Ca2+]i transients. However, voltage-activated K+ channel inhibitor, 4-Aminopyridine, did not affect these responses. Removing extracellular Ca2+ or blocking of L-type voltage-sensitive Ca2+ channels (L-VSCCs) with nifedipine inhibited FSS-induced [Ca2+]i transients in osteoblasts too. Quantifying membrane potential with patch clamp showed that the resting potential of osteoblasts was −43.3 mV and the depolarization induced by FSS was about 44 mV. Voltage clamp indicated that this depolarization was enough to activated L-VSCCs in osteoblasts. These results suggested a time line of Ca2+ mobilization wherein FSS activated SACs to promote Na+ entry to depolarize membrane that, in turn, activated L-VSCCs and Ca2+ influx though L-VSCCs switched on [Ca2+]i response in osteoblasts.  相似文献   

2.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

3.
The calcium indicator fura-2 was used to study the effect of hypotonic solutions on the intracellular calcium concentration, [Ca2+] i , in a human osteoblast-like cell line. Decreasing the tonicity of the extracellular solution to 50% leads to an increase in [Ca2+] i from ∼150 nm up to 1.3 μm. This increase in [Ca2+] i was mainly due to an influx of extracellular Ca2+ since removing of extracellular Ca2+ reduced this increase to ∼250 nm. After cell swelling most of the cells were able to regulate their volume to the initial level within 800 sec. The whole-cell recording mode of the patch-clamp technique was also used to study the effect of an increase in [Ca2+] i on membrane currents in these cells. An increase in [Ca2+] i revealed two types of Ca2+-activated K+ channels, K(Ca) channels. Current through both channel types could not be observed below voltage of +80 mV with [Ca2+] i buffered to 100 nm or less. With patch-electrodes filled with solutions buffering [Ca2+] i to 10 μm both channels types could be readily observed. The activation of the first type was apparently voltage-independent since current could be observed over the entire voltage range used from −160 to +100 mV. In addition, the current was also blocked by charybdotoxin (CTX). The second type of K(Ca) channels in these cells could be activated with depolarizations more positive than −40 mV from a holding potential of −80 mV. This type was blocked by CTX and paxilline. Adding paxilline to the extracellular solution inhibited regulatory volume decrease (RVD), but could not abolish RVD. We conclude that two K(Ca) channel types exist in human osteoblasts, an intermediate conductance K(Ca) channel and a MaxiK-like K(Ca) channel. MaxiK channels might get activated either directly or by an increase in [Ca2+] i elicited through hypotonic solutions. In combination with the volume-regulated Cl conductance in the same cells this K+ channel seems to play a vital role in volume regulation in human osteoblasts. Received: 8 February 2000/Revised: 13 July 2000  相似文献   

4.
Calcium (Ca2+)-activated K+ (KCa) channels regulate membrane excitability and are activated by an increase in cytosolic Ca2+ concentration ([Ca2+]i), leading to membrane hyperpolarization. Most patch clamp experiments that measure KCa currents use steady-state [Ca2+] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca2+]i changes dynamically, for example during [Ca2+]i oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca2+]i on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each KCa subtype in isolation were used to simultaneously measure agonist-evoked [Ca2+]i signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca2+]i oscillations induced a corresponding KCa current that faithfully followed the [Ca2+]i in 13–50% of cells, suggesting a good synchronization. However, [Ca2+]i and KCa current was much less synchronized in 50–76% of cells that exhibited Ca2+-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca2+]i events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca2+]i and KCa current was least synchronized, 36% of total [Ca2+]i spikes occurred without activating a corresponding KCa current spike, suggesting that BKCa channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca2+]i and KCa current suggests that this relationship is more complex than could be predicted from steady-state [Ca2+]i and KCa current. These phenomena may be important for encoding stimulus–response coupling in various cell types.  相似文献   

5.
We have previously reported that angiotensin II (ANG II) induces oscillations in the cytoplasmic calcium concentration ([Ca2+]i) of pulmonary vascular myocytes. The present work was undertaken to investigate the effect of ANG II in comparison with ATP and caffeine on membrane currents and to explore the relation between these membrane currents and [Ca2+]i. In cells clamped at −60 mV, ANG II (10 μM) or ATP (100 μM) induced an oscillatory inward current. Caffeine (5 μM) induced only one transient inward current. In control conditions, the reversal potential (Erev) of these currents was close to the equilibrium potential for Cl ions (ECl = −2.1 mV) and was shifted towards more positive values in low-Cl solutions. Niflumic acid (10–50 μM) and DIDS (0.25-1 mM) inhibited this inward current. Combined recordings of membrane current and [Ca2+]i by Indo-1 microspectrofluorimetry revealed that ANG II- and ATP-induced currents occurred simultaneously with oscillations in [Ca2+]i, whereas the caffeine-induced current was accompanied by only one transient increase in [Ca2+]i Niflumic acid (25 μM) had no effect on agonist-induced [Ca2+]i responses, whereas thapsigargin (1 μM) abolished both membrane current and the [Ca2+]i response. Heparin (5 mg/ml in the pipette solution) inhibited both [Ca2+]i responses and membrane currents induced by ANG II and ATP, but not by caffeine. In pulmonary arterial strips, ANG II-induced contraction was inhibited by niflumic acid (25 μM) or nifedipine (1 μM) to the same extent and the two substances did not have an additive effect. This study demonstrates that, in pulmonary vascular smooth muscle, ANG II, as well as ATP, activate an oscillatory calcium dependent chloride current which is triggered by cyclic increases in [Ca2+]i and that both oscillatory phenomena are primarily IP3 mediated. It is suggested that ANG II-induced oscillatory chloride current could depolarise the cell membrane leading to activation of voltage-operated Ca2+ channels. The resulting Ca2+ influx contributes to the component of ANG II-induced contraction that is equally sensitive to chloride or calcium channel blockade.  相似文献   

6.
Despite a high Ca2+-permeability of the P2Z receptor in human B lymphocytes, extracellular ATP4has only a minor effect on global [Ca2+]i. The aim of this study was to reveal the mechanisms responsible for this discrepancy. We investigated the relationship between ATP4−-application, Cai2-response, membrane current and membrane potential in two human B cell lines and in human tonsillar B cells. This was achieved by a combination of FACS- and voltage clamp measurements and the usage of appropriate voltage- and Ca2-sensitive fluorescent dyes. ATP4-induced changes in whole-cell current and [Ca2]iwere blocked by extracellular as well as intracellular Na+. Under current clamp conditions, ATP4−-induced Na+-entry diminished the Ca2+entry via reduction of the driving force. A substantial increase in [Ca2+]iinduced by ATP4−was only observed in Na+-free solutions.The pathway of signal transduction activated by ATP4via P2Z receptor of human B lymphocytes under physiological conditions seems not to operate by an increase in the global intracellular Ca2-concentration, but rather by the depolarization of the cell membrane as a result of the Na+-influx.  相似文献   

7.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

8.
T-type Ca2+ channel family includes three subunits CaV3.1, CaV3.2 and CaV3.3 and have been shown to control burst firing and intracellular Ca2+ concentration ([Ca2+]i) in neurons. Here, we investigated whether CaV3.1 channels could generate a pacemaker current and contribute to cell excitability. CaV3.1 clones were over-expressed in the neuronal cell line NG108-15. CaV3.1 channel expression induced repetitive action potentials, generating spontaneous membrane potential oscillations (MPOs) and concomitant [Ca2+]i oscillations. These oscillations were inhibited by T-type channels antagonists and were present only if the membrane potential was around −61 mV. [Ca2+]i oscillations were critically dependent on Ca2+ influx through CaV3.1 channels and did not involve Ca2+ release from the endoplasmic reticulum. The waveform and frequency of the MPOs are constrained by electrophysiological properties of the CaV3.1 channels. The trigger of the oscillations was the CaV3.1 window current. This current induced continuous [Ca2+]i increase at −60 mV that depolarized the cells and triggered MPOs. Shifting the CaV3.1 window current potential range by increasing the external Ca2+ concentration resulted in a corresponding shift of the MPOs threshold. The hyperpolarization-activated cation current (Ih) was not required to induce MPOs, but when expressed together with CaV3.1 channels, it broadened the membrane potential range over which MPOs were observed. Overall, the data demonstrate that the CaV3.1 window current is critical in triggering intrinsic electrical and [Ca2+]i oscillations.  相似文献   

9.
Monensin, a exchanger, induces catecholamine secretion from adrenal chromaffin cells by an unknown mechanism. We found and report here that in bovine chromaffin cells, monensin evokes profound changes in [Ca2+]i which were measured by means of the fluorescent Ca2+ indicator Indo-1. Application of monensin (10 μM) generated a marked [Ca2+]i rise. Removal of external Ca2+ did not prevent the elevation of [Ca2+]i, though it was significantly decreased. In the presence of nifedipine (10 μM) or tetrodotoxin (3 μM) the monensin-induced [Ca2+]i rise remained unchanged. In contrast, in the absence of extracellular Na+ the [Ca2+]i rise was abolished. Addition of caffeine (40 mM) at the peak response generated by monensin produced a further increase in [Ca2+]i, which was independent of external [Ca2+] or [Na+]. After depletion of the IP3-sensitive compartment by thapsigargin (1 μM), caffeine still induced a rise in [Ca2+]i while the monensin response was absent. We concluded that the origin of the Ca2+ for the [Ca2+]i increase elicited by the exchanger in chromaffin cells is not the extracellular space. Clearly there seems to be at least two intracellular Ca2+ stores, one of which is affected by monensin. This Ca2+ pool, which is different than the pool stimulated by caffeine, is sensitive to the extracellular [Ca2+] and to thapsigargin. Our data are compatible with the idea that the monensin mediated Na+ entry could activate the production of inositol trisphosphate and this in turn could trigger Ca2+ release from the endoplasmic reticulum.  相似文献   

10.
The P2U purinergic agonist ATP (0.3 mM) elicited an increase in [Ca2+]i due to Ca2+ release from intracellular stores in transfected Chinese hamster ovary cells that express the bovine cardiac Na+/Ca2+ exchanger (CK1.4 cells). The following observations indicate that ATP-evoked Ca2+ release was accompanied by a Ca2+- dependent regulatory activation of Na+/Ca2+ exchange activity: Addition of extracellular Ca2+ (0.7 mM) 0–1 min after ATP evoked a dramatic rise in [Ca2+]i in Na+-free media (Li+ substitution) compared to Na+-containing media; no differences between Na+- and Li+-based media were observed with vector-transfected cells. In the presence of physiological concentrations of extracellular Na+ and Ca2+, the ATP-evoked rise in [Ca2+]i declined more rapidly in CK1.4 cells compared to control cells, but then attained a long-lived plateau of elevated [Ca2+]i which eventually came to exceed the declining [Ca2+]i values in control cells. ATP elicited a transient acceleration of exchange-mediated Ba2+ influx, consistent with regulatory activation of the Na+/Ca2+ exchanger. The acceleration of Ba2+ influx was not observed in vector-transfected control cells, or in CK1.4 cells in the absence of intracellular Na+ or when the Ca2+ content of the intracellular stores had been reduced by prior treatment with ionomycin. The protein kinase C activator phorbol 12-myristate 13-acetate attenuated the exchange-mediated rise in [Ca2+]i under Na+-free conditions, but did not inhibit the ATP-evoked stimulation of Ba2+ influx. The effects of PMA are therefore not due to inhibition of exchange activity, but probably reflect the influence of protein kinase C on other Ca2+ homeostatic mechanisms. We conclude that exchange activity is accelerated during ATP-evoked Ca2+ release from intracellular stores through regulatory activation by increased [Ca2+]i. In the absence of extracellular Ca2+, the stimulation of exchange activity is short-lived and follows the time course of the [Ca2+]i transient; in the presence of extracellular Ca2+, we suggest that the exchanger remains activated for a longer period of time, thereby stabilizing and prolonging the plateau phase of store-dependent Ca2+ entry.  相似文献   

11.
Although the role of Na+ in several aspects of Ca2+ regulation has already been shown, the exact mechanism of intracellular Ca2+ concentration ([Ca2+]i) increase resulting from an enhancement in the persistent, non‐inactivating Na+ current (INa,P), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na+ current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na+ concentration ([Na+]i) and biphasic [Ca2+]i increase in CA1 pyramidal cells in acute hippocampal slices. The Ca2+ response was tetrodotoxin‐ and extracellular Ca2+‐dependent and ionotropic glutamate receptor‐independent. The first phase of [Ca2+]i rise was the net result of Ca2+ influx through voltage‐gated Ca2+ channels and mitochondrial Ca2+ sequestration. The robust second phase in addition involved reverse operation of the Na+–Ca2+ exchanger and mitochondrial Ca2+ release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non‐inactivating Na+ current and [Ca2+]i regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with INa,P. Describing the magnitude, temporal pattern and sources of Ca2+ increase induced by INa,P may provide novel targets for antiepileptic drug therapy.  相似文献   

12.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

13.
Effects of unoprostone isopropyl (unoprostone), a prostaglandin metabolite analog; latanoprost, a PGF analog; and PGF were examined in HCN-1A cells, a model system for studies of large conductance Ca2+ activated K+(BK) channel activator-based neuroprotective agents. Unoprostone and latanoprost, both used as anti-glaucoma agents, have been suggested to act through FP receptors and have neuroprotective effects. Ion channel activation, plasma membrane polarization, [Ca2+]i changes and protection against long-term irreversible glutamate-induced [Ca2+]i increases were studied. Unoprostone activated iberiotoxin (IbTX)-sensitive BK channels in HCN-1A cells with an EC50 of 0.6 ± 0.2 nM and had no effect on Cl currents. Unoprostone caused IbTX-sensitive plasma membrane hyperpolarization that was insensitive to AL8810, an FP receptor antagonist. In contrast, latanoprost and PGF activated a Cl current sensitive to [Ca2+]i chelation, tamoxifen and AL8810, and caused IbTX-insensitive, AL8810-sensitive membrane depolarization consistent with FP receptor-mediated Ca2+ signaling Cl current activation. Latanoprost and PGF, but not unoprostone, increased [Ca2+]i. Unoprostone, PGF only partially, but not latanoprost protected HCN-1A cells against glutamate-induced Ca2+ deregulation. These findings show that unoprostone has a distinctly different mechanism of action from latanoprost and PGF. Whether unoprostone affects the BK channel directly or an unidentified signaling mechanism has not been determined.  相似文献   

14.
Cytosolic Ca2+ concentration ([Ca2+]i) is reduced in cultured neurons undergoing neuronal death caused by inhibitors of the ubiquitin proteasome system. Activation of calcium entry via voltage‐gated Ca2+ channels restores cytosolic Ca2+ levels and reduces this neuronal death ( Snider et al. 2002 ). We now show that this reduction in [Ca2+]i is transient and occurs early in the cell death process, before activation of caspase 3. Agents that increase Ca2+ influx such as activation of voltage‐gated Ca2+ channels or stimulation of Ca2+ entry via the plasma membrane Na–Ca exchanger attenuate neuronal death only if applied early in the cell death process. Cultures treated with proteasome inhibitors had reduced current density for voltage‐gated Ca2+ channels and a less robust increase in [Ca2+]i after depolarization. Levels of endoplasmic reticulum Ca2+ were reduced and capacitative Ca2+ entry was impaired early in the cell death process. Mitochondrial Ca2+ was slightly increased. Preventing the transfer of Ca2+ from mitochondria to cytosol increased neuronal vulnerability to this death while blockade of mitochondrial Ca2+ uptake via the uniporter had no effect. Programmed cell death induced by proteasome inhibition may be caused in part by an early reduction in cytosolic and endoplasmic reticulum Ca2+, possibly mediated by dysfunction of voltage‐gated Ca2+ channels. These findings may have implications for the treatment of disorders associated with protein misfolding in which proteasome impairment and programmed cell death may occur.  相似文献   

15.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

16.
Neuroendocrine adrenal chromaffin cells release neurohormones catecholamines in response to Ca2+ entry via voltage-gated Ca2+ channels (VGCCs). Adrenal chromaffin cells also express non-voltage-gated channels, which may conduct Ca2+ at negative membrane potentials, whose role in regulation of exocytosis is poorly understood. We explored how modulation of Ca2+ influx at negative membrane potentials affects basal cytosolic Ca2+ concentration ([Ca2+]i) and exocytosis in metabolically intact voltage-clamped bovine adrenal chromaffin cells. We found that in these cells, Ca2+ entry at negative membrane potentials is balanced by Ca2+ extrusion by the Na+/Ca2+ exchanger and that this balance can be altered by membrane hyperpolarization or stimulation with an inflammatory hormone bradykinin. Membrane hyperpolarization or application of bradykinin augmented Ca2+-carrying current at negative membrane potentials, elevated basal [Ca2+]i, and facilitated synchronous exocytosis evoked by the small amounts of Ca2+ injected into the cell via VGCCs (up to 20 pC). Exocytotic responses evoked by the injections of the larger amounts of Ca2+ via VGCCs (> 20 pC) were suppressed by preceding hyperpolarization. In the absence of Ca2+ entry via VGCCs and Ca2+ extrusion via the Na+/Ca2+ exchanger, membrane hyperpolarization induced a significant elevation in [Ca2+]i and asynchronous exocytosis. Our results indicate that physiological interferences, such as membrane hyperpolarization and/or activation of non-voltage-gated Ca2+ channels, modulate basal [Ca2+]i and, consequently, segregation of exocytotic vesicles and their readiness to be released spontaneously and in response to Ca2+ entry via VGCCs. These mechanisms may play role in homeostatic plasticity of neuronal and endocrine cells.  相似文献   

17.
Altered cytosolic free calcium concentrations ([Ca2+]i) accompany impaired brain metabolism and may mediate subsequent effects on brain function and cell death. The current experiments examined whether hypoxia-induced elevations in [Ca2+]i are from external or internal sources. In the absence of external calcium, neither KCl depolarization, histotoxic hypoxia (KCN), nor the combination changed [Ca2+]i. However, with external CaCl2 concentrations as small as 13 M, KCl depolarization increased [Ca2+]i instantaneously while hypoxia gradually raised [Ca2+]i. The combination of KCN and KCl was additive. Increasing external calcium concentrations up to 2.6 mM exaggerated the effects of K+ and KCN on [Ca2+]i, but raising medium calcium to 5.2 mM did not further augment the rise. Diminishing the sodium in the media, which alters the activity and perhaps the direction of the Na/Ca exchanger, reduced the increase in [Ca2+]i due to hypoxia, but enhanced the KCl response. The changes in ATP following K+ depolarization, KCN or their combination in the presence of physiological calcium concentrations did not parallel alterations in [Ca2+]i, which suggests that diminished activity of the calcium dependent ATPase does not underlie the elevation in [Ca2+]i. Valinomycin, an ionophore which reduces the mitochondrial membrane potential, elevated [Ca2+]i and the effects were additive with K+ depolariration in a calcium dependent manner that paralleled the effects of hypoxia. Together these results suggest that hypoxia-induced elevations of synaptosomal [Ca2]i are due to an inability of the synaptosome to buffer entering calcium.  相似文献   

18.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

19.
We previously demonstrated a transmural gradient in Na/K pump current (I P) and [Na+] i , with the highest maximum I P and lowest [Na+] i in epicardium. The present study examines the relationship between the transmural gradient in I P and Na/Ca exchange (NCX). Myocytes were isolated from canine left ventricle. Whole-cell patch clamp was used to measure current generated by NCX (I NCX) and inward background calcium current (I ibCa), defined as inward current through Ca2+ channels less outward current through Ca2+-ATPase. When resting myocytes from endocardium (Endo), midmyocardium (Mid) or epicardium (Epi) were studied in the same conditions, I NCX was the same and I ibCa was zero. Moreover, Western blots were consistent with NCX protein being uniform across the wall. However, the gradient in [Na+] i , with I ibCa = 0, should create a gradient in [Ca2+] i . To test this hypothesis, we measured resting [Ca2+] i using two methods, based on either transport or the Ca2+-sensitive dye Fura2. Both methods demonstrated a significant transmural gradient in resting [Ca2+] i , with Endo > Mid > Epi. This gradient was eliminated by exposing Epi to sufficient ouabain to partially inhibit Na/K pumps, thus increasing [Na+] i to values similar to those in Endo. These data support the existence of a transmural gradient for Ca2+ removal by NCX. This gradient is not due to differences in expression of NCX; rather, it is generated by a transmural gradient in [Na+] i , which is due to a transmural gradient in plasma membrane expression of the Na/K pump.  相似文献   

20.
Identified wind‐sensitive giant interneurons in the cricket's cercal sensory system integrate cercal afferent signals and release an avoidance behavior. A calcium‐imaging technique was applied to the giant interneurons to examine the presence of the voltage‐dependent Ca2+ channels (VDCCs) in their dendrites. We found that presynaptic stimuli to the cercal sensory nerve cords elevated the cytosolic Ca2+ concentration ([Ca2+]i) in the dendrites of the giant interneurons. The dendritic Ca2+ rise coincided with the spike burst of the giant interneurons, and the rate of Ca2+ rise depended on the frequency of the action potentials. These results suggest that the action potentials directly caused [Ca2+]i increase. Observation of the [Ca2+]i elevation induced by depolarizing current injection demonstrates the presence of the VDCCs in the dendrites. Although hyperpolarizing current injection into the giant interneuron suppressed action potential generation, EPSPs could induce no [Ca2+]i increase. This result means that ligand‐gated channels do not contribute to the synaptically stimulated Ca2+ elevation. On the other hand, antidromically stimulated spikes also increased [Ca2+]i in all cellular regions including the dendrites. And bath application of a mixture of Ni2+, Co2+, and Cd2+ or tetrodotoxin inhibited the [Ca2+]i elevation induced by the antidromic stimulation. From these findings, we suppose that the axonal spikes antidromically propagate and induce the Ca2+ influx via VDCCs in the dendrites. The spike‐dependent Ca2+ elevation may regulate the sensory signals processing via second‐messenger cascades in the giant interneurons. © 2000 John Wiley & Sons, Inc. J Neurobiol 44: 45–56, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号