首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
QTL for stem sugar-related and other agronomic traits were identified in a converted sweet (R9188) × grain (R9403463-2-1) sorghum population. QTL analyses were conducted using phenotypic data for 11 traits measured in two field experiments and a genetic map comprising 228 SSR and AFLP markers grouped into 16 linkage groups, of which 11 could be assigned to the 10 sorghum chromosomes (SBI-01 to SBI-10). QTL were identified for all traits and were generally co-located to five locations (SBI-01, SBI-03, SBI-05, SBI-06 and SBI-10). QTL alleles from R9188 were detected for increased sucrose content and sugar content on SBI-01, SBI-05 and SBI-06. R9188 also contributed QTL alleles for increased Brix on SBI-05 and SBI-06, and increased sugar content on SBI-03. QTL alleles from R9403463-2-1 were found for increased sucrose content and sucrose yield on SBI-10, and increased glucose content on SBI-07. QTL alleles for increased height, later flowering and greater total dry matter yield were located on SBI-01 of R9403463-2-1, and SBI-06 of R9188. QTL alleles for increased grain yield from both R9403463-2-1 and R9188 were found on SBI-03. As an increase in stem sugars is an important objective in sweet sorghum breeding, the QTL identified in this study could be further investigated for use in marker-assisted selection of sweet sorghum.  相似文献   

2.
Sorghum, a cereal of economic importance ensures food and fodder security for millions of rural families in the semi-arid tropics. The objective of the present study was to identify and validate quantitative trait loci (QTL) for grain yield and other agronomic traits using replicated phenotypic data sets from three post-rainy dry sorghum crop seasons involving a mapping population with 245 F9 recombinant inbred lines derived from a cross of M35-1 × B35. A genetic linkage map was constructed with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers. The QTL analysis for 11 traits following composite interval mapping identified 91 QTL with 5–12 QTL for each trait. QTL detected in the population individually explained phenotypic variation between 2.5 and 30.3 % for a given trait and six major genomic regions with QTL effect on multiple traits were identified. Stable QTL across seasons were identified. Of the 60 genic markers mapped, 21 were found at QTL peak or tightly linked with QTL. A gene-based marker XnhsbSFCILP67 (Sb03g028240) on SBI-03, encoding indole-3-acetic acid-amido synthetase GH3.5, was found to be involved in QTL for seven traits. The QTL-linked markers identified for 11 agronomic traits may assist in fine mapping, map-based gene isolation and also for improving post-rainy sorghum through marker-assisted breeding.  相似文献   

3.

Background

Sorghum [Sorghum bicolor (L.) Moench] is an important dry-land cereal of the world providing food, fodder, feed and fuel. Stay-green (delayed-leaf senescence) is a key attribute in sorghum determining its adaptation to terminal drought stress. The objective of this study was to validate sorghum stay-green quantitative trait loci (QTL) identified in the past, and to identify new QTL in the genetic background of a post-rainy adapted genotype M35-1.

Results

A genetic linkage map based on 245 F9 Recombinant Inbred Lines (RILs) derived from a cross between M35-1 (more senescent) and B35 (less senescent) with 237 markers consisting of 174 genomic, 60 genic and 3 morphological markers was used. The phenotypic data collected for three consecutive post-rainy crop seasons on the RIL population (M35-1 × B35) was used for QTL analysis. Sixty-one QTL were identified for various measures of stay-green trait and each trait was controlled by one to ten QTL. The phenotypic variation explained by each QTL ranged from 3.8 to 18.7%. Co-localization of QTL for more than five traits was observed on two linkage groups i.e. on SBI-09-3 flanked by S18 and Xgap206 markers and, on SBI-03 flanked by XnhsbSFCILP67 and Xtxp31. QTL identified in this study were stable across environments and corresponded to sorghum stay-green and grain yield QTL reported previously. Of the 60 genic SSRs mapped, 14 were closely linked with QTL for ten traits. A genic marker, XnhsbSFCILP67 (Sb03g028240) encoding Indole-3-acetic acid-amido synthetase GH3.5, was co-located with QTL for GLB, GLM, PGLM and GLAM on SBI-03. Genes underlying key enzymes of chlorophyll metabolism were also found in the stay-green QTL regions.

Conclusions

We validated important stay-green QTL reported in the past in sorghum and detected new QTL influencing the stay-green related traits consistently. Stg2, Stg3 and StgB were prominent in their expression. Collectively, the QTL/markers identified are likely candidates for subsequent verification for their involvement in stay-green phenotype using NILs and to develop drought tolerant sorghum varieties through marker-assisted breeding for terminal drought tolerance in sorghum.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-909) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
The shoot fly is one of the most destructive insect pests of sorghum at the seedling stage. Deployment of cultivars with improved shoot fly resistance would be facilitated by the use of molecular markers linked to QTL. The objective of this study was to dissect the genetic basis of resistance into QTL, using replicated phenotypic data sets obtained from four test environments, and a 162 microsatellite marker-based linkage map constructed using 168 RILs of the cross 296B (susceptible) × IS18551 (resistant). Considering five component traits and four environments, a total of 29 QTL were detected by multiple QTL mapping (MQM) viz., four each for leaf glossiness and seedling vigor, seven for oviposition, six for deadhearts, two for adaxial trichome density and six for abaxial trichome density. The LOD and R 2 (%) values of QTL ranged from 2.6 to 15.0 and 5.0 to 33%, respectively. For most of the QTL, IS18551 contributed resistance alleles; however, at six QTL, alleles from 296B also contributed to resistance. QTL of the related component traits were co-localized, suggesting pleiotropy or tight linkage of genes. The new morphological marker Trit for trichome type was associated with the major QTL for component traits of resistance. Interestingly, QTL identified in this study correspond to QTL/genes for insect resistance at the syntenic maize genomic regions, suggesting the conservation of insect resistance loci between these crops. For majority of the QTL, possible candidate genes lie within or very near the ascribed confidence intervals in sorghum. Finally, the QTL identified in the study should provide a foundation for marker-assisted selection (MAS) programs for improving shoot fly resistance in sorghum.  相似文献   

6.
Root system is a vital part of plants for absorbing soil moisture and nutrients and it influences the drought tolerance. Identification of the genomic regions harbouring quantitative trait loci (QTLs) for root and yield traits, and the linked markers can facilitate sorghum improvement through marker-assisted selection (MAS) besides the deeper understanding of the plant response to drought stress. A population of 184 recombinant inbred lines (RILs), derived from E36-1 × SPV570, along with parents were phenotyped for component traits of yield in field and root traits in an above ground rhizotron. High estimates of heritability and genetic advance for all the root traits and for most of the yield traits, presents high scope for improvement of these traits by simple selection. A linkage map constructed with 104 marker loci comprising 50 EST-SSRs, 34 non-genic nuclear SSRs and 20 SNPs, and QTL analysis was performed using composite interval mapping (CIM) approach. A total of eight and 20 QTLs were mapped for root and yield related traits respectively. The QTLs for root volume, root fresh weight and root dry weight were found co-localized on SBI-04, supported by a positive correlation among these traits. Hence, these traits can be improved using the same linked markers. The lack of overlap between the QTLs of component traits of root and yield suggested that these two sets of parameters are independent in their influence and the possibility of combining these two traits might enhance productivity of sorghum under receding moisture condition.  相似文献   

7.
Sorghum (Sorghum bicolor (L.) Moench) is one of the most important crops in the semiarid regions of the world. One of the important biotic constraints to sorghum production in India is the shoot fly which attacks sorghum at the seedling stage. Identification of the genomic regions containing quantitative trait loci (QTLs) for resistance to shoot fly and the linked markers can facilitate sorghum improvement programmes through marker-assisted selection. A simple sequence repeat (SSR) marker- based skeleton linkage map of two linkage groups of sorghum was constructed in a population of 135 recombinant inbred lines (RIL) derived from a cross between IS18551 (resistant to shoot fly) and 296B (susceptible to shoot fly). A total of 14 SSR markers, seven each on linkage groups A and C were mapped. Using data of different shoot fly resistance component traits, one QTL which is common for glossiness, oviposition and dead hearts was detected following composite interval mapping (CIM) on linkage group A. The phenotypic variation explained by this QTL ranged from 3.8%–6.3%. Besides the QTL detected by CIM, two more QTLs were detected following multi-trait composite interval mapping (MCIM), one each on linkage groups A and C for the combinations of traits which were correlated with each other. Results of the present study are novel as we could find out the QTLs governing more than one trait (pleiotropic QTLs). The identification of pleiotropic QTLs will help in improvement of more than one trait at a time with the help of the same linked markers. For all the QTLs, the resistant parent IS18551 contributed resistant alleles.  相似文献   

8.
QTL analysis of early-season cold tolerance in sorghum   总被引:1,自引:0,他引:1  
Cool temperatures during the early-growing season are a major limitation to growing sorghum [Sorghum bicolor (L.) Moench] in temperate areas. Several landraces from China have been found to exhibit higher emergence and greater seedling vigor under cool conditions than most breeding lines currently available, but tend to lack desirable agronomic characteristics. The introgression of desirable genes from Chinese landraces into elite lines could be expedited by marker-assisted selection. Using a population of 153 RI lines, developed from a cross between Chinese landrace ‘Shan Qui Red,’ (SQR, cold-tolerant) and SRN39 (cold-sensitive), QTL associated with early-season performance under both cold and optimal conditions were identified by single marker analysis, simple interval mapping (SIM), and composite interval mapping (CIM). Germination was observed under controlled conditions, and other traits were measured in field plantings. Two QTL for germination were identified: one on linkage group SBI-03a, derived from SRN39, was significant under cold and optimal temperatures. The other, on group SBI-07b, showed greater significance under cold temperatures and was contributed by SQR. A region of group SBI-01a, derived from SQR, showed strong associations with seedling emergence and seedling vigor scores under early and late field plantings. A QTL for both early and late emergence was identified by CIM on SBI-02 which favored the SRN39 allele. SIM identified a QTL for early vigor on SBI-04 favoring the SQR genotype. Further studies are needed to validate the effects of these QTL, but they represent the first step in development of a marker-assisted breeding effort to improve early-season performance in sorghum.  相似文献   

9.
Ninety three recombinant inbreds of Sorghum bicolor (L. Moench) were derived from a cross between two sorghum lines GBIK and Redlan. This population was used to identify quantitative trait loci (QTLs) for resistance and tolerance to greenbug (Schizaphids graminum Rondani) Biotypes I and K. One hundred and thirteen loci (38 SSRs and 75 RAPDs) were mapped in 12 linkage groups covering 1,530 cM. In general, nine QTLs were detected affecting both resistance and tolerance to greenbug (GB) Biotypes I and K. The phenotypic variance explained by each QTL ranged from 5.6% to 38.4%. Four SSRs and one RAPD marker were associated with the expression of all resistance and tolerance traits. These markers appear to be linked to biotype non-specific resistance and tolerance genes. Four additional markers were associated with biotype-specific resistance or tolerance traits. The detection of more than one locus for each biotype supports the hypothesis that several regions, which represent different genes, control the expression of resistance and tolerance to greenbug in sorghum. The results can be used for marker-assisted selection and the breeding of greenbug-tolerant sorghum cultivars.  相似文献   

10.
Y Q Wu  Yinghua Huang 《Génome》2007,50(1):84-89
Sorghum bicolor (L.) Moench is an important grain and forage crop grown worldwide. We developed a simple sequence repeat (SSR) linkage map for sorghum using 352 publicly available SSR primer pairs and a population of 277 F2 individuals derived from a cross between the Westland A line and PI 550610. A total of 132 SSR loci appeared polymorphic in the mapping population, and 118 SSRs were mapped to 16 linkage groups. These mapped SSR loci were distributed throughout 10 chromosomes of sorghum, and spanned a distance of 997.5 cM. More important, 38 new SSR loci were added to the sorghum genetic map in this study. The mapping result also showed that chromosomes SBI-01, SBI-02, SBI-05, and SBI-06 each had 1 linkage group; the other 6 chromosomes were composed of 2 linkage groups each. Except for 5 closely linked marker flips and 1 locus (Sb6_34), the marker order of this map was collinear to a published sorghum map, and the genetic distances of common marker intervals were similar, with a difference ratio 相似文献   

11.
Greenbug, Schizaphis graminum (Rondani), represents the most important pest insect of sorghum, Sorghum bicolor (L.) Moench, in the Great Plains of the United States. Biotype E is the most widespread and dominant type not only in sorghum and wheat, Triticum aestivum L., fields, but also on many noncultivated grass species. This study was designed to determine sorghum accession PI 550610 resistance to greenbug biotype E, to map the resistance quantitative trait loci (QTLs) by using an established simple sequence repeat (SSR) linkage map and to identify SSR markers closely linked to the major resistance QTLs. In greenhouse screening tests, seedlings of PI 550610 showed strong resistance to the greenbug at a level similar to resistant accession PI550607. For QTL mapping, one F2 population containing 277 progeny and one population containing 233 F2:3 families derived from Westland A line x PI 550610 were used to genotype 132 polymorphic SSR markers and to phenotype seedling resistance to greenbug feeding. Phenotypic evaluation of sorghum seedling damage at 7, 12, 17, and 21 d postinfestation in the F2:3 families revealed that resistance variation was normally distributed. Single marker analysis indicated 16 SSRs spread over five chromosomes were significant for greenbug resistance. Composite interval and multiple interval mapping procedures indicated that a major QTL resided in the interval of 6.8 cM between SSR markers Xtxp358 and Xtxp289 on SBI-09. The results will be valuable in the development of new greenbug biotype E resistant sorghum cultivars and for the further characterization of major genes by map-based cloning.  相似文献   

12.
The associations of candidate genes with quantitative trait loci (QTL) for insect resistance provide primary insight into the molecular mechanisms of resistance. The objectives of the present study were to genetically map the candidate genes and identify their association with shoot fly resistance, and update the genetic map with new markers to locate additional QTL. In this study, 80 candidate gene (CG)-based markers were developed, targeting the seven most important shoot fly resistance genomic regions reported in our previous study. Of the 17 polymorphic CGs, the allelic polymorphisms of seven genes were significantly associated with 18 major QTL for component traits of resistance in multiple QTL mapping (MQM), and two genes in the single-marker analysis. MQM with an updated map revealed 20 new QTL with LOD and R 2 (%) values ranging from 2.6 to 15.6 and 5.5 to 34.5?%, respectively. The susceptible parent 296B contributed resistance at 10 QTL. Interestingly, an orthologous insect resistance gene Cysteine protease-Mir1 (XnhsbmSFC34/SBI-10), previously presumed to be a CG based on synteny with maize, was significantly associated with major QTL for all traits (except seedling vigor) explaining 22.1?% of the phenotypic variation for deadhearts%, a direct measure of shoot fly resistance. Similarly, a NBS?CLRR gene (XnhsbmSFCILP2/SBI-10), involved in rice brown planthopper resistance, was associated with deadhearts% and number of eggs per plant. Beta-1,3-glucanase (XnhsbmSFC4/SBI-10), involved in aphid and brown planthopper resistance, was associated with deadhearts% and leaf glossiness. Comparative QTL analysis revealed the existence of common QTL for shoot fly and other important sorghum insect pests such as greenbug, head bug, and midge. Finally, the associated CGs should aid in elucidating the molecular basis of resistance, high-resolution mapping, and map-based cloning of major QTL, besides providing powerful gene tags for marker-assisted selection of shoot fly resistance.  相似文献   

13.
Sustainability of the cranberry industry is threatened by widespread and increasing losses due to fruit rot in the field as well as increasing restrictions on fungicide inputs. Breeding for resistance offers a partial solution but is challenging because fruit rot is caused by a complex of pathogenic fungi that can vary by location and from year to year. We identified four genetically diverse germplasm accessions that exhibit broad-spectrum fruit rot resistance under field conditions. Three of these accessions were used in biparental crosses to develop four populations segregating for resistance. Genotyping by sequencing was used to generate single-nucleotide polymorphism (SNP) markers for development of high-density genetic maps and quantitative trait locus (QTL) analyses. Nineteen QTL associated with fruit rot resistance, distributed on nine linkage groups, were discovered in our populations. Three of these QTL matched previously reported fruit rot resistance QTL. Four newly reported QTL found on linkage group 8 (Vm8), which explain between 21 and 33% of the phenotypic variance for fruit rot, are of particular interest to our breeding program. The populations described herein were also phenotyped for other horticulturally important traits, and QTL associated with yield and berry weight were identified. These QTL provide markers for candidate gene discovery and for future breeding efforts to enhance and pyramid disease resistance and other traits into elite horticultural backgrounds.  相似文献   

14.
The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.  相似文献   

15.
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.  相似文献   

16.
Shoot fly is one of the most important pests affecting the sorghum production. The identification of quantitative trait loci (QTL) affecting shoot fly resistance enables to understand the underlying genetic mechanisms and genetic basis of complex interactions among the component traits. The aim of the present study was to detect QTL for shoot fly resistance and the associated traits using a population of 210 RILs of the cross 27B (susceptible) × IS2122 (resistant). RIL population was phenotyped in eight environments for shoot fly resistance (deadheart percentage), and in three environments for the component traits, such as glossiness, seedling vigor and trichome density. Linkage map was constructed with 149 marker loci comprising 127 genomic-microsatellite, 21 genic-microsatellite and one morphological marker. QTL analysis was performed by using MQM approach. 25 QTL (five each for leaf glossiness and seedling vigor, 10 for deadhearts, two for adaxial trichome density and three for abaxial trichome density) were detected in individual and across environments. The LOD and R 2 (%) values of QTL ranged from 2.44 to 24.1 and 4.3 to 44.1%, respectively. For most of the QTLs, the resistant parent, IS2122 contributed alleles for resistance; while at two QTL regions, the susceptible parent 27B also contributed for resistance traits. Three genomic regions affected multiple traits, suggesting the phenomenon of pleiotrophy or tight linkage. Stable QTL were identified for the traits across different environments, and genetic backgrounds by comparing the QTL in the study with previously reported QTL in sorghum. For majority of the QTLs, possible candidate genes were identified. The QTLs identified will enable marker assisted breeding for shoot fly resistance in sorghum.  相似文献   

17.
18.
Sorghum is a worldwide important cereal crop and widely cultivated for grain and forage production. Greenbug, Schizaphis graminum (Rondani) is one of the major insect pests of sorghum and can cause serious damage to sorghum plants, particularly in the US Great Plains. Identification of chromosomal regions responsible for greenbug resistance will facilitate both map-based cloning and marker-assisted breeding. Thus, a mapping experiment was conducted to dissect sorghum genetic resistance to greenbug biotype I into genomic regions. Two hundred and seventy-seven (277) F(2) progeny and their F(2:3) families from a cross between Westland A line (susceptible parent) and PI550610 (resistant parent) combined with 118 polymorphic simple sequence repeat (SSR) markers were used to map the greenbug resistance QTLs. Composite interval mapping (CIM) and multiple interval mapping (MIM) revealed two QTLs on sorghum chromosome nine (SBI-09) consistently conditioned the resistance of host plant to the greenbug. The two QTLs were designated as QSsgr-09-01 (major QTL) and QSsgr-09-02 (minor QTL), accounting for approximately 55-80%, and 1-6% of the phenotypic variation for the resistance to greenbug feeding, respectively. These resistance QTLs appeared to have additive and partially dominant effects. The markers Xtxp358, Xtxp289, Xtxp67 and Xtxp230 closely flanked the respective QTLs, and can be used in high-throughput marker-assisted selections (MAS) for breeding new resistant parents and producing commercial hybrids.  相似文献   

19.
Improving seed related traits remains key objective in lentil breeding. In recent years, genomic resources have shown great promise to accelerate crop improvement. However, limited genomic resources in lentil greatly restrict the use of genomics assisted breeding. The present investigation aims to build an intraspecific genetic linkage map and identify the QTL associated with important seed relevant traits using 94 recombinant inbreds (WA 8649090 × Precoz). A total of 288 polymorphic DNA markers including simple sequence repeat (SSR), inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) were assayed on mapping population. The resultant genetic linkage map comprised 220 loci spanning 604.2 cM of the lentil genome, with average inter-marker distance of 2.74 cM. QTL mapping in this RIL population uncovered a total of 18 QTL encompassing nine major and nine minor QTL. All major QTL were detected for seed related traits viz., seed diameter (SD), seed thickness (ST), seed weight (SW) and seed plumpness (SP) across two locations. A considerable proportion of the phenotypic variation (PV) was accounted to these QTL. For instance, one major QTL on LG5 controlling SW (QTL 15) explained 50% PV in one location, while the same QTL accounted for 34.18% PV in other location. Importantly, the genomic region containing multiple QTL for different seed traits was mapped to a 17-cM region on LG5. The genomic region harbouring QTL for multiple traits opens up exciting opportunities for genomics assisted improvement of lentil.  相似文献   

20.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号