首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using controlled experiments, the ability of the trematode parasite Stegodexamene anguillae, encysted within its intermediate fish host, the common bully Gobiomorphus cotidianus, was tested to indirectly detect the presence of its definitive host by exposing infected G. cotidianus to chemical cues from the definitive host, the short-finned eel Anguilla australis. The trematode can abbreviate its normal life cycle and achieve precocious maturity in G. cotidianus, or adopt the usual strategy consisting in delaying maturity until it reaches an A. australis. The results suggest that chemical cues from the definitive A. australis host do not affect the frequency of life cycle abbreviation in S. anguillae. Other life-history traits, such as parasite body size or the egg output of early-maturing parasites, were also unaffected by chemical cues from A. australis or from an alternative predator of G. cotidianus, the perch Perca fluviatilis, that is not a suitable host for the trematode. Therefore, factors other than A. australis host presence or abundance may be the important selective forces for life cycle abbreviation in this fish parasite.  相似文献   

2.
Grass shrimp, Palaemonetes pugio Holthuis and P. vilgaris (Say), were collected at 11 localities along the coast of Georgia and surveyed for digenetic trematode metacercariae. The effect of trematode infection on grass shrimp fitness was also examined. Microphallus turgidas (Leigh) was the only trematode observed. The prevalence of metacercarial cysts of this parasite in P. pugio (75%) was higher than in P. vulgaris (24%), as were the mean intensity, abundance, and population density (no. cysts/cm host body length) of the parasite. Infected shrimp were found at every collection locality and parasite prevalence and density were greatest in P. pugio from higher salinity localities (> or = 20 parts per thousand [ppt]). There was no relation between host body size and parasite density in P. vulgaris, and parasite density increased with host body size in P. pugio, suggesting that the parasite does not affect host survival. There was no relation between parasite density and shrimp egg mass, but nonovigerous female P. pugio were more heavily infected than ovigerous ones. In addition, 1 metacercaria of M. turgidus in each of 2 specimens of P. vulgaris was parasitized by the haplosporidian Urosporidium crescens De Turk. This represents a new shrimp host record for this hyperparasite.  相似文献   

3.
4.
Interactions among different parasite species within hosts can be important factors shaping the evolution of parasite and host populations. Within snail hosts, antagonistic interactions among trematode species, such as competition and predation, can influence parasite abundance and diversity. In the present study we examined the strength of antagonistic interactions between 2 marine trematodes (Maritrema novaezealandensis and Philophthalmus sp.) in naturally infected Zeacumantus subcarinatus snails. We found approximately the same number of snails harbouring both species as would be expected by chance given the prevalence of each. However, snails infected with only M. novaezealandensis and snails with M. novaezealandensis and Philophthalmus sp. co-occurring were smaller than snails harbouring only Philophthalmus sp. In addition, the number of Philophthalmus sp. rediae was not affected by the presence of M. novaezealandensis sporocysts and the within-host clonal diversity of M. novaezealandensis was not influenced by the presence of Philophthalmus sp. Our results suggest that antagonistic interactions may not be a major force influencing the evolution of these trematodes and that characteristics such as host size and parasite infection longevity are shaping their abundance and population dynamics.  相似文献   

5.
Patterns of parasite load and aggregation of the bird trematode Cardiocephaloides longicollis in its main intermediate host in the Mediterranean, the annular sea bream, Diplodus annularis, were studied in a large sample collected off Valencia (Spain) and are discussed within the context of the parasite induced host mortality hypothesis. The metacercariae were located within large composite cysts of host origin in the ventricles of the optic lobes of the cerebrum. A weak immunological response was detected in older fish, which was significantly associated with the total parasite load. Although the mean abundance of C. longicollis showed a tendency to increase with host size, the infection levels were generally homogeneous with a noticeable plateauing in the intermediate size classes. The distribution of the metacercariae was aggregated and agreed with the negative binomial distribution. There was a marked decline in parasite aggregation in the largest size-class, suggesting parasite-induced host mortality in the oldest fish possibly due to predation by large non-host fish predators. On the other hand, levelling off of abundance and decrease in heterogeneity of parasite distribution within the intermediate age cohort could indicate that these sizes are being rapidly and/or constantly removed from the host population due to by-catch fishing. The overall high infection levels and the continuous recruitment across age cohorts provides evidence that an enhanced parasite transmission is taking place in the Gulf of Valencia due to increased spatial overlap of the hosts involved in the life cycle. We suggest a human-induced facilitation of the digenean life cycle due to the fact that gulls in the area feed extensively on discards, thus indicating the possibility of an unforeseen effect of fishing practices in a marine littoral system.  相似文献   

6.
The infro- and component community dynamics of digenetic trematodes in a freshwater gastropod community were examined over a 33-month period. The gastropod and trematode communities were composed of 17 and 10 species respectively. A total of 9,831 snails was collected; among them, 192 belonging to 14 species were infected by larval trematodes. The size of infected snails was significantly greater than that of healthy ones, and the increase of prevalence with size/age was interpreted as related to the increased probability of ultimately becoming parasitized. The trematode community was rich in allogenic species, but the most frequent trematode (cercariaeum) was autogenic and generalist (a range of 12 snail host species). There was a significantly positive relationship between the frequency of trematode species in the community and the number of first intermediate host species. A great temporal heterogeneity occurred in the prevalence of the snails, mainly attributed to the great temporal fluctuations of snail host populations and the variability of freshwater ecological conditions. The data on the occurrence of larval trematodes in 14 host species over the 33-month study allowed indicate a significant negative correlation between the abundance of gastropods and the prevalence of trematodes.  相似文献   

7.
Robert Poulin  Klaus Rohde 《Oecologia》1997,110(2):278-283
Parasite communities are the product of acquisitions and losses of parasite species during the evolutionary history of their host. When comparing the parasite communities of different host species to assess the role of ecological variables as determinants of parasite species richness, a correction must be made for the possible phylogenetic inheritance of parasites from ancestral hosts independent of host ecology. We performed a comparative analysis of the metazoan ectoparasite communities on the heads and gills of 111 species of marine fish. The influences of host body size, host schooling behaviour and water temperature were tested after controlling for both sampling and phylogenetic effects. Overall, water temperature correlated positively with both parasite species richness and abundance, whereas fish size only correlated with parasite abundance. The correlation across all fish species between water temperature and parasite species richness was dependent on an outlier point. The results, however, generally held when fish from different biogeographical areas (Pacific and Atlantic) were analysed separately. In all analyses, parasite species richness always correlated strongly with parasite abundance. There was no evidence that schooling fish taxa harboured richer or more abundant ectoparasite communities than their non-schooling sister taxa, possibly because of the small number of contrasts available for that test. Overall, whereas both water temperature and host size affect the number of parasite individuals that can be harboured by a fish, only temperature appears important as a determinant of ectoparasite community richness. Received: 30 May 1996 / Accepted: 23 October 1996  相似文献   

8.
Larval helminths often share intermediate hosts with other individuals of the same or different species. Competition for resources and/or conflicts over transmission routes are likely to influence both the association patterns between species and the life history strategies of each individual. Parasites sharing common intermediate hosts may have evolved ways to avoid or associate with other species depending on their definitive host. If not, individual parasites could develop alternative life history strategies in response to association with particular species. Three sympatric species of helminths exploit the amphipod Paracalliope fluviatilis as an intermediate host in New Zealand: the acanthocephalan Acanthocephalus galaxii, the trematode Microphallus sp. and the progenetic trematode Coitocaecum parvum. Adult A. galaxii and C. parvum are both fish parasites whereas Microphallus sp. infects birds. We found no association, either positive or negative, among the three parasite species. The effects of intra- and interspecific interactions were also measured in the trematode C. parvum. Both intra- and interspecific competition seemed to affect both the life history strategy and the size and fecundity of C. parvum. Firstly, the proportion of progenesis was higher in metacercariae sharing their host with Microphallus sp., the bird parasite, than in any other situation. Second, the intensity of intraspecific competition apparently constrained the ability of metacercariae to adopt progenesis and limited both the growth and egg production of progenetic individuals. These results show that the life history strategy adopted by a parasite may be influenced by other parasites sharing the same host.  相似文献   

9.
对科威特湾微茎科滨鹬马蹄吸虫幼虫期的中间宿主双带盾桑椹螺(Clypeomorus bifasciata)及小相手蟹(Nanosesarma minutum)的季节动态进行了研究。调查期超过一年,在检查的1 600只螺和415只蟹中, 11.8 %的螺感染了8种马蹄属线虫中的一种,且以滨鹬马蹄吸虫的感染占优势(9.9 %螺感染) ; 80 %的蟹感染滨鹬马蹄吸虫囊蚴。虽然一年四季两种宿主都会感染,但吸虫的流行和尾蚴(指成熟期感染)在夏季呈现高蜂。从螺体排出的尾蚴具有明显季节性,在此海湾必须要超过最低温度20℃。总的感染率在较大(较老)的螺里有所下降,显示吸虫影响宿主生存并随之影响宿主群体结构。囊蚴的感染丰度与蟹的个体大小有明显相关性;较大的蟹感染较多的囊蚴,显示宿主能耐受更多的吸虫。调查显示,囊蚴的感染率与蟹的大小或性别无相关性。囊蚴体外脱囊以及产卵吸虫的释放证明,成熟虫体终年存在于所有大小和性别不同的蟹里,显示从蟹到鸟的持续感染是可能的。总的来说,滨鹬马蹄吸虫在海湾的传播动态是由这两种无脊椎动物宿主来协调,并似乎是被一系列依赖于温度的活动控制,这些活动影响易感宿主种群及感染性幼虫期尾蚴和囊蚴的存在。  相似文献   

10.
To understand possible factors controlling transmission of trematode larvae between first and second intermediate hosts we examined the impact of ambient fauna on parasite transmission in a marine intertidal parasite-host association. Cockle hosts (Cerastoderma edule) kept together with selected co-occurring macrozoobenthic species in mesocosms acquired a lower parasite load compared to cockles kept alone, when targeted by cercariae of the trematode Himasthla elongata. The reduction of parasite load in the cockles differed between the 7 macrozoobenthic species tested and was between 35 and 91%. Three different types of reduction could be distinguished: (1) predators (Carcinus maenas, Crangon crangon) actively preying upon cercariae, (2) non-host filter feeders (Crepidula fornicata, Mya arenaria, Crassostrea gigas) filtering cercariae but not becoming infected and (3) alternative hosts (Mytilus edulis, Macoma balthica) becoming infected by the cercariae and thus distracting cercariae from the target hosts. In addition, interference competition may occur in the form of disturbance of cockles by ambient organisms resulting in lower filtration rates and subsequently lower parasite loads. Our results suggest that the species composition and relative abundance of the ambient fauna of parasite-host systems play an important role in controlling trematode transmission rates in benthic marine systems.  相似文献   

11.
The progenetic opecoelid trematode Coitocaecum parvum can reproduce either precociously by selfing in its second intermediate amphipod host or by mating in its normal definitive fish host. In this study, we describe and compare the infection parameters and some life history traits of both egg-producing worms and non-egg producing worms in both their second intermediate and definitive hosts. We showed that 58% of worms start to produce eggs while still in the amphipod. The relative abundance of progenetic worms increased with amphipod size, and egg-producing worms achieved greater size in amphipods than in fish. These 2 findings support the reproductive insurance hypothesis. No difference in size was revealed between eggs produced in the amphipods and those produced in the fish. Although more information is needed to thoroughly assess the respective costs and benefits of selfing and mating in this species, our conclusion is that adopting progenesis may have few, if any, long-term negative consequences for the parasite.  相似文献   

12.
Synopsis As new arctic marine fisheries develop there is need for a comprehensive ecosystem approach to long-term management. This approach recognizes the importance of community interactions such as food web structure and trophic patterns. We determined whether hierarchical clustering (guild formation) is an effective method of trophic evaluation in deep-sea Artic fish communities using stomach content and parasite data with size class, and evaluated the application of endohelminth communities (parasite species transmitted in the food) as indicators of trophic status. Cluster analysis using food group abundance with size class of fish revealed the presence of 11 guilds within the community, however the same analysis using parasite data showed little correlation between food and parasites. Redundancy analysis (RDA) within the 11 guilds also revealed no significant correlations between food group and parasite abundance suggesting that this type of ordination is not suited for environments containing mainly generalist feeders. RDA of individual taxa without a priori guild designation found that taxa in benthic deep-sea communities are defined by their ability to exploit prey species in more than one habitat zone. Benthic fish species were significantly correlated with benthic food groups and parasites that utilize benthic intermediate hosts whereas benthopelagic–pelagic species fed on a higher diversity of prey species and were infected by a larger number of non-host specific parasites. Eigenanalysis and Monte Carlo results showed that parasites and food groups are highly correlated, indicating that parasite community analysis is an effective tool for predicting feeding strategies in Arctic marine environments. It also suggests that in most cases endoparasite infections alone could be used for trophic evaluation in the absence of stomach content data.  相似文献   

13.
The Hackensack Meadowlands District is a large heavily degraded, brackish marsh system in the urbanized northeastern region of New Jersey, USA. Six study sites were used, three of which were restored (Mill Creek, Skeetkill Creek and Vince Lombardi), and three others were unrestored (Richard DeKorte Park, Cedar Creek and Kingsland Creek). Highly significant differences were found with respect to snail abundance and gill parasite abundance. In the three restored sites, significantly more Littoridinops tenuipes were found, and Fundulus heteroclitus had significantly more digenean trematode metacercariae gill infections than at unrestored sites. As habitat quality improves following restoration, the number of suitable digenean trematode parasite hosts multiplies as substrate for benthic invertebrates (first intermediate host) increases and usage by other species, such as Fundulus spp. (second intermediate host), is encouraged, which then attracts more wading birds (definitive host). Though the restoration process enhances trophic complexity, including primary consumers (gastropods), secondary consumers (fish) and tertiary consumers (wading birds), and ultimately parasite diversity, restoration also helps facilitate parasite life cycles.  相似文献   

14.
The role of ecological and phylogenetic processes is fundamental to understanding how parasite communities are structured. However, for coral reef fishes, such information is almost nonexistent. In this study, we analyzed the structure of the parasite communities based on composition, richness, abundance, and biovolume of ecto- and endoparasites of 14 wrasse species (Labridae) from Lizard Island, Great Barrier Reef, Australia. We determine whether the structure of the parasite communities from these fishes was related to ecological characteristics (body size, abundance, swimming ability, and diet) and/or the phylogenetic relatedness of the hosts. We examined 264 fishes from which almost 37,000 individual parasites and 98 parasite categories (types and species) were recorded. Gnathiid and cestode larvae were the most prevalent and abundant parasites in most fishes. Mean richness, abundance, and biovolume of ectoparasites per fish species were positively correlated with host body size only after controlling for the host phylogeny, whereas no such correlation was found for endoparasites with any host variable. Because most ectoparasites have direct transmission, one possible explanation for this pattern is that increased space (host body size) may increase the colonization and recruitment of ectoparasites. However, endoparasites generally have indirect transmission that can be affected by many other variables, such as number of prey infected and rate of parasite transmission.  相似文献   

15.
The parasite-host relationships between Salmincola edwardsii (Copepoda: Lernaeopodidae) and Arctic charr Salvelinus alpinus were studied in lake Takvatn, northern Norway, over an 8-year period. The infection levels were modest, with an overall prevalence of 16·1% and an abundance of 0·5 parasites fish−1. Most of the infected fish (54·1%) had only one parasite attached, whilst only 4·3% had more than 10. In general, parasite infection increased with increasing age, and hence size of the fish. The increase was modest up to age 7, whereafter a steep increment in parasite burdens occurred. Within each age class there was little effect of either fish size, gender, maturation or choice of macrohabitat upon parasite abundance. There was also little year-to-year variation in infection of the different age classes, indicating a high degree of stability of the parasite-host interactions in this system. The infection levels exhibited seasonal changes, being lowest in early summer and highest during winter. The infection rates seemed to be related to seasonal and ontogenetic habitat shifts of the charr.  相似文献   

16.
Aim We used published inventories of trematodes in Littorina littorea (L.) and Hydrobia ulvae (Pennant) in European seas to search for two basic biogeographical patterns in the spatial occurrence of various trematode species: (1) do parasite distribution and richness patterns in the two host snails overlap with known ecoregions of free‐living organisms; and (2) does trematode species richness in the snails follow latitudinal or longitudinal gradients? Location North East Atlantic. Methods We used multidimensional scaling (MDS), analysis of similarity (ANOSIM) and analysis of variance (ANOVA) to test whether there were overlaps of parasite distribution and richness with known ecoregions of free‐living organisms. In addition, we used linear regression analyses to test whether trematode richness in snails (corrected for sampling effort) was correlated with the latitude or longitude of the sampling sites. Results When corrected for sampling effort, mean trematode species richness per site did not differ among the different ecoregions in L. littorea. In contrast, in H. ulvae, mean species richness was much lower for sites from the Celtic Sea compared with sites from the Baltic Sea and the North Sea. Based on the results of MDS analyses, trematode species composition was distinct among ecoregions; in particular, communities from the Baltic Sea differed markedly from communities in the Celtic Sea, for both snail species. Latitude and longitude were not significantly correlated with parasite species richness in either snail species. Most trematode species had restricted distributions, and only three species in L. littorea and five species in H. ulvae occurred at more than 50% of the sites. Main conclusions There is more structure in the large‐scale distribution of trematodes in gastropods than one would expect from the large‐scale dispersal capabilities of their bird and fish final hosts. We propose mechanisms based both on limited dispersal via fish and bird final hosts and on gradients in environmental factors to explain the observed patterns.  相似文献   

17.
Doi H  Yurlova NI 《Parasitology》2011,138(8):1022-1028
It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982-1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.  相似文献   

18.
This study addresses the infrapopulation sizes of 2 larval trematode species Himasthla quissetensis and Zoogonus rubellus as they co-occur within their estuarine snail host Ilyanassa obsoleta. Rediae of H. quissetensis and sporocysts of Z rubellus were counted in snails singly infected with each parasite and in snails infected with both. Comparisons of the counts indicate that infrapopulations of H. quissetensis were unaffected by co-occurrence with Z rubellus. However, Z. rubellus infrapopulations were reduced when co-occurring with H. quissetensis. It is proposed that this situation does not result from an interspecific interaction between parasite species. Although this double infection is relatively frequent in certain snail populations, it is contended that these trematode species do not co-occur often enough to evolve responses to one another. However, the host environment must be encountered in each life cycle, and both trematode species must be adapted to use it. On this basis, whatever happens when these 2 species occupy the same host is based on adaptations of the parasites to the host. It is proposed that these parasites are adapted to self-limit their infrapopulations in the snail host. They can, thus, preserve and use the host for many years and thereby enhance total cercarial transmission (fitness). Infrapopulation sizes would be determined by host resource levels, which, among other factors, would be influenced by the presence of multiple parasite species. In single infections, by far the most common situation, host resource levels would be set by the nutritional status or age (size) of the host (or both). The reduced infrapopulation sizes of Z rubellus on co-occurrence suggest that this trematode is more sensitive to host resource levels than is H. quissetensis.  相似文献   

19.
The frequent co-occurrence of two or more genotypes of the same parasite species in the same individual hosts has often been predicted to select for higher levels of virulence. Thus, if parasites can adjust their level of host exploitation in response to competition for resources, mixed-clone infections should have more profound impacts on the host. Trematode parasites are known to induce a wide range of modifications in the morphology (size, shell shape or ornamentation) of their snail intermediate host. Still, whether mixed-clone trematode infections have additive effects on the phenotypic alterations of the host remains to be tested. Here, we used the snail Potamopyrgus antipodarum-infected by the trematode Coitocaecum parvum to test for both the general effect of the parasite on host phenotype and possible increased host exploitation in multi-clone infections. Significant differences in size, shell shape and spinosity were found between infected and uninfected snails, and we determined that one quarter of naturally infected snails supported mixed-clone infections of C. parvum. From the parasite perspective, this meant that almost half of the clones identified in this study shared their snail host with at least one other clone. Intra-host competition may be intense, with each clone in a mixed-clone infection experiencing major reductions in volume and number of sporocysts (and consequently multiplication rate and cercarial production) compared with single-clone infections. However, there was no significant difference in the intensity of host phenotype modifications between single and multiple-clone infections. These results demonstrate that competition between parasite genotypes may be strong, and suggest that the frequency of mixed-clone infections in this system may have selected for an increased level of host exploitation in the parasite population, such that a single-clone is associated with a high degree of host phenotypic alteration.  相似文献   

20.
Several studies have suggested that the fitness of a parasite can be directly impacted by the quality of its host. In such cases, selective pressures could act to funnel parasites towards the highest-quality hosts in a population. The results of this study demonstrate that snail host quality is strongly correlated with spatial patterning in trematode infections and that habitat type is the underlying driver for both of these variables. Two trematodes (Himasthla quissetensis and Zoogonus rubellus) with very different life cycles assume the same spatial infection pattern in populations of the first intermediate host (Ilyanassa obsoleta) in coastal marsh habitats. Infected snails are disproportionately recovered from intertidal panne habitats, which offer more hospitable environs for snails than do adjacent habitats (intertidal creeks, coastal flats, and subtidal creeks), in terms of protection from turbulence and wave action, as well as the availability of food stuffs. Snails in intertidal panne habitats are of higher quality when assessed in terms of average size-specific mass, growth rate, and fecundity. In mark-recapture experiments, snails frequently dispersed into intertidal pannes but were never observed leaving them. In addition, field experiments demonstrate that snails confined to intertidal panne habitats are disproportionately infected by both trematode species, relative to conspecifics confined to adjacent habitats. Laboratory experiments show that infected snails suffer significant energetic losses and consume more than uninfected conspecifics, suggesting that infected snails in intertidal pannes may survive better than in adjacent habitats. We speculate that 1 possible mechanism for the observed patterns is that the life cycles of both trematode species allows them to contact the highest-quality snails in this marsh ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号