共查询到20条相似文献,搜索用时 0 毫秒
1.
The components of non-photochemical chlorophyll fluorescence quenching (qN) in barley leaves have been quantified by a combination of relaxation kinetics analysis and 77 K fluorescence measurements (Walters RG and Horton P 1991). Analysis of the behaviour of chlorophyll fluorescence parameters and oxygen evolution at low light (when only state transitions — measured as qNt — are present) and at high light (when only photoinhibition — measured as qNi — is increasing) showed that the parameter qNt represents quenching processes located in the antenna and that qNi measures quenching processes located in the reaction centre but which operate significantly only when those centres are closed. The theoretical predictions of a variety of models describing possible mechanisms for high-energy-state quenching, measured as the residual quenching, qNe, were then tested against the experimental data for both fluorescence quenching and quantum yield of oxygen evolution. Only one model was found to agree with these data, one in which antennae exist in two states, efficient in either energy transfer or energy dissipation, and in which those photosynthetic units in a dissipative state are unable to exchange energy with non-dissipative units.Abbreviations: Fo, Fm
room-temperature chlorophyll fluorescence yield with all centres open, closed
- Fv
variable fluorescence yield
- LHC II
light-harvesting chlorophyll-protein complex of PS II
- PS I, PS II
Photosystem I, II
- P700, P680
primary donor in Photosystem I, II
- QA
primary electron acceptor of PS II
- Pmax
maximum quantum yield of oxygen evolution
- qN
coefficient of non-photochemical quenching of variable fluorescence
- qNe, qNt, qNi
coefficient of non-photochemical quenching due to high-energy-state, state transition, photoinhibition
- qO
coefficient of quenching of dark level fluorescence
- qP
coefficient of photochemical quenching of variable fluorescence
- P
intrinsic quantum yield of open PS II reaction centres = s/qP
- PS 2
quantum yield of PS = qP × Fv/Fm
- S
quantum yield of oxygen evolution = rate of oxygen evolution/light intensity 相似文献
2.
The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves 总被引:7,自引:0,他引:7
Bernard Genty Jeremy Harbinson Jean-Marie Briantais Neil R. Baker 《Photosynthesis research》1990,25(3):249-257
It has been suggested previously that non-photochemical quenching of chlorophyll fluorescence is associated with a decrease in the rate of photosystem 2 (PS 2) photochemistry. In this study analyses of fluorescence yield changes, induced by flashes in leaves exhibiting different amounts of non-photochemical quenching of fluorescence, are made to determine the effect of non-photochemical excitation energy quenching processes on the rate of PS 2 photochemistry. It is demonstrated that both the high-energy state and the more slowly relaxing components of non-photochemical quenching reduce the rate of PS 2 photochemistry. Flash dosage response curves for fluorescence yield show that non-photochemical quenching processes effectively decrease the relative effective absorption cross-section for PS 2 photochemistry. It is suggested that non-photochemical quenching processes exert an effect on the rate of PS 2 photochemistry by increasing the dissipation of excitation energy by non-radiative processes in the pigment matrices of PS 2, which consequently results in a decrease in the efficiency of delivery of excitation energy for PS 2 photochemistry. 相似文献
3.
Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer 总被引:58,自引:0,他引:58
A newly developed fluorescence measuring system is employed for the recording of chlorophyll fluorescence induction kinetics (Kautsky-effect) and for the continuous determination of the photochemical and non-photochemical components of fluorescence quenching. The measuring system, which is based on a pulse modulation principle, selectively monitors the fluorescence yield of a weak measuring beam and is not affected even by extremely high intensities of actinic light. By repetitive application of short light pulses of saturating intensity, the fluorescence yield at complete suppression of photochemical quenching is repetitively recorded, allowing the determination of continuous plots of photochemical quenching and non-photochemical quenching. Such plots are compared with the time courses of variable fluorescence at different intensities of actinic illumination. The differences between the observed kinetics are discussed. It is shown that the modulation fluorometer, in combination with the application of saturating light pulses, provides essential information beyond that obtained with conventional chlorophyll fluorometers. 相似文献
4.
The influence of chilling (8 °C, 5 d) at two photon flux densities [PFD, L = 200 and H = 500 μmol(photon) m−2 s−1] on the gas exchange and chlorophyll fluorescence was investigated in chilling-tolerant and chilling-sensitive maize hybrids
(Zea mays L., K383×K130, K185×K217) and one cultivar of field bean (Vicia faba L. minor, cv. Nadwiślański). The net photosynthetic rate (P
N) for the both studied plant species was inhibited at 8 °C. P
N of both maize hybrids additionally decreased during chilling. Changes in the quantum efficiency of PS2 electron transport
(ΦPS2) as a response to chilling and PFD were similar to P
N. Measurements of ΦPS2/ΦCO2 ratio showed that in field bean seedlings strong alternative photochemical sinks of energy did not appear during chilling.
However, the high increment in ΦPS2/ΦCO2 for maize hybrids can indicate reactions associated with chill damage generation. At 8 °C the non-photochemical quenching
(NPQ) increased in all plants with chilling duration and PFD. The appearance of protective (qI,p) and damage (qI,d) components of qI and a decrease in qE (energy dependent quenching) took place. NPQ components of field bean and maize hybrids differed from each other. The amount
of protective NPQ (qE + qI,p) components as part of total NPQ was higher in field bean than in maize hybrids at both PFD. On 5th day of chilling, the sum of qE and qI,p was 26.7 % of NPQ in tolerant maize hybrids and 17.6 % of NPQ in the sensitive one (averages for both PFD). The increased
PFD inhibited the ability of all plants to perform protective dissipation of absorbed energy. The understanding of the genotypic
variation of NPQ components in maize may have implications for the future selection of plants with a high chilling tolerance. 相似文献
5.
Deborah Rees Graham Noctor Alexander V. Ruban Jane Crofts Andrew Young Peter Horton 《Photosynthesis research》1992,31(1):11-19
The pH dependence of maximum chlorophyll fluorescence yield (Fm) was examined in spinach thylakoids in the presence of nigericin to dissipate the transthylakoid pH gradient. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was present to eliminate photochemical quenching. Thylakoids were prepared from dark adapted leaves (dark thylakoids) or preilluminated leaves (light thylakoids). In the latter there had been approximately 50% conversion of the xanthophyll violaxanthin to zeaxanthin, while no conversion had occurred in the former. In the presence of a reductant such as ascorbate, antimycin A sensitive quenching was observed (half maximal quenching at 5 M), whose pH dependence differed between the two types of thylakoid. Preillumination of leaves resulted in more quenching at pH values where very little quenching was observed in dark thylakoids (pH 5–7.6). This was similar to activation of high-energy-state quenching (qE) observed previously (Rees D, Young A, Noctor G, Britton G and Horton P (1989) FEBS Lett 256: 85–90). Thylakoids isolated from preilluminated DTT treated leaves, that contained no zeaxanthin, behaved like dark thylakoids. A second form of quenching was observed in the presence of ferricyanide, that could be reversed by the addition of ascorbate. This was not antimycin A sensitive and showed the same pH dependence in both types of thylakoid. The former type of quenching, but not the latter, showed similar low temperature fluorescence emission spectra to qE, and was considered to occur by the same mechanism.Abbreviations DCMU
3(3,4-dichlorophenyl)-1,1-dimethylurea
- DTT
dithiothreitol
- EDTA
Ethylenediaminetetra-acetic acid
- F0
dark level fluorescence yield
- Fm
maximum fluorescence yield
- Fv/Fm
ratio of variable to total fluorescence yield
- Hepes
4-(2-hydroxyethyl)1-piperazineethanesul-phonic acid
- Mes
2-(N-morpholino) ethanesulfonate
- pH
transthylakoid pH gradient
- PS I
Photosystem I
- PS II
Photosystem II
- QA
primary stable electron acceptor of Photosystem II
- qE
high-energy-state fluorescence quenching 相似文献
6.
Ulrich Schreiber Michael Kühl Ingo Klimant Heinz Reising 《Photosynthesis research》1996,47(1):103-109
By using a fiber-optic microprobe in combination with a modified PAM Fluorometer, chlorophyll fluorescence yield was measured within leaves with spatial resolution of approximately 20 m. The new system employs a miniature photomultiplier for detection of the pulse-modulated fluorescence signal received by the 20 m fiber tip. The obtained signal/noise ratio qualifies for recordings of fluorescence induction kinetics (Kautsky effect), fluorescence quenching by the saturation pulse method and determination of quantum yield of energy conversion at Photosystem II at different sites within a leaf. Examples of the system performance and of practical applications are given. It is demonstrated that the fluorescence rise kinetics are distinctly faster when chloroplasts within the spongy mesophyll are illuminated as compared to palisade chloroplasts. Photoinhibition is shown to affect primarily the quantum yield of the palisade chloroplasts when excessive illumination is applied from the adaxial leaf side. The new system is envisaged to be used in combination with light measurements within leaves for an assessment of the specific contributions of different leaf regions to overall photosynthetic activity and for an integrative modelling of leaf photosynthesis.This paper is dedicated to Ulrich Heber on the occasion of his 65th birthday, with great respect for his outstanding achievements in photosynthesis research. 相似文献
7.
Chlorophyll fluorescence quenching induced by low concentrations of m-dinitrobenzene (DNB) is investigated. In intact spinach chloroplasts DNB causes photochemical and non-photochemical quenching. The two forms of quenching are distinguished by applying the saturation pulse method with a new type of modulation fluorometer. Half-maximal photochemical quenching is observed at about 3 micromolar DNB. It is inhibited by 3-(3,4 dichlorophenyl)-1, 1-dimethylurea (DCMU) and by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Photochemical quenching by DNB leads to suppression of the I-P transient in a fluorescence induction curve. Upon application of saturating continuous light, the increase of fluorescence yield is separated into a photochemical and a thermal part. DNB causes suppression of only the slowest sub-component of the thermal part, in analogy to the action of Hill reagents. Simultaneous measurements of oxygen exchange rate and fluorescence reveal that a part of DNB induced quenching is accompanied by oxygen uptake. Most DNB-induced non-photochemical quenching is prevented by nigericin and, hence, can be considered energy-dependent quenching. The small component persisting in the presence of nigericin is identical to the one observed with methylviologen and other Hill reagents, likely to be due to static quenching by oxidized plastoquinone. The presented data confirm the original finding of Etienne and Lavergne (Biochim Biophys Acta 283: 268–278, 1972) that low concentrations of DNB selectively affect the thermal component of variable fluorescence. However, while these authors interpreted the quenching by a non-photochemical mechanism, the present investigation emphasizes a photochemical mechanism, in analogy to the effect of electron acceptors or mediators.Abbreviations DBMIB
2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone
- DCMU
3-(3,4-dichlorophenyl)-1, 1-dimethylurea
- DNB
m-dinitrobenzene
- PGA
3-phosphoglycerate
- PMS
phenazinemethosulphate
- PS I and PS II
photosystems I and II 相似文献
8.
P. Pospíil 《Photosynthetica》1997,34(3):343-355
The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching. 相似文献
9.
Karel Rohá?ek Martine Bertrand Brigitte Moreau Boris Jacquette Christelle Caplat Annick Morant-Manceau Beno?t Schoefs 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1640)
Diatoms are especially important microorganisms because they constitute the larger group of microalgae. To survive the constant variations of the light environment, diatoms have developed mechanisms aiming at the dissipation of excess energy, such as the xanthophyll cycle and the non-photochemical chlorophyll (Chl) fluorescence quenching. This contribution is dedicated to the relaxation of the latter process when the adverse conditions cease. An original nonlinear regression analysis of the relaxation of non-photochemical Chl fluorescence quenching, qN, in diatoms is presented. It was used to obtain experimental evidence for the existence of three time-resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among the three components. The application of metabolic inhibitors (dithiothreitol, ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed the identification of the mechanisms on which each component mostly relies. qNi is linked to the relaxation of the ΔpH gradient and the reversal of the xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by the high light exposure, qNf seems to reflect fast conformational changes within thylakoid membranes in the vicinity of the photosystem II complexes. 相似文献
10.
Photosynthesis and photoinhibition in leaves of chlorophyll b-less barley in relation to absorbed light 总被引:3,自引:0,他引:3
The response of photosynthesis to absorbed light by intact leaves of wild-type ( Hordeum vulgare L. cv. Gunilla) and chlorophyll b -less barley ( H. vulgare L. cv. Dornaria, chlorina-f22800 ) was measured in a light integrating sphere. Up to the section where the light response curve bends most sharply the responses of the b -less and wild-type barley were similar but not identical. Average quantum yield and convexity for the mutant light response curves were 0.89 and 0.90, respectively, times those of the wild-type barley. The maximum quantum yield for PSII photochemistry was also 10% lower as indicated by fluorescence induction kinetics (Fv /Fm ). Just above the region where the light curve bends most sharply, photosynthesis decreased with time in the mutant but not in the wild-type barley. This decrease was associated with a decrease in Fv /Fm indicating photoinhibition of PSII. This photoinhibition occurred in the same region of the light response curve where zeaxanthin formation occurs. Zeaxanthin formation occurred in both the chlorophyll b -less and wild-type leaves. However, the epoxidation state was lower in the mutant than in the wild-type barley. The results indicate that chlorophyll b -less mutants will have reduced photosynthetic production as a result of an increased sensitivity to photoinhibition and possibly a lowered quantum yield and convexity in the absence of photoinhibition. 相似文献
11.
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main
chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of
fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of
large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the
small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers
without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas
in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing
populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states,
is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles,
the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of
aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll
molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased,
and their singlet excited-state lifetimes steeply decrease. 相似文献
12.
The mechanism of rapidly-relaxing non-photochemical quenching in two plant species,Chenopodium album L. andDigitalis purpurea L., that differ considerably in their capacity for such quenching has been investigated (Johnson G.N. et al. 1993, Plant Cell Environ.16, 673–679). Illumination of leaves of both species in the presence of 2% O2 balance N2 led to the formation of zeaxanthin. When thylakoids were isolated from leaves of each species that had been so treated it was found that inD. purpurea non-photochemical quenching was “activated” relative to the control; a higher level of quenching was found for a given trans-thylakoid pH gradient. No such activation of non-photochemical quenching was observed inC. album. Similar conclusions were drawn when comparing quenching in intact leaves. It is concluded that light activation of quenching is a process that cannot readily be induced inC. album. Measurement of the sensitivity of non-photochemical quenching in leaves ofC. album andD. purpurea to dithiothreitol (DTT; a reagent that inhibits formation of zeaxanthin) showed differences between the two species. In both cases, feeding leaves with DTT inhibited the light-induced formation of zeaxanthin. InC. album this was accompanied by complete inhibition of reversible non-photochemical quenching, whereas inD. purpurea this inhibition was only partial. Data are discussed in relation to studies on the mechanism of quenching and the role of zeaxanthin in this process. 相似文献
13.
Dissipation of absorbed excitation energy as heat, measured by its effect on the quenching of chlorophyll fluorescence, is induced under conditions of excess light in order to protect the photosynthetic apparatus of plants from light-dependent damage. The spectral characteristics of this quenching have been compared to that due to photochemistry in the Photosystem II reaction centre using leaves of Guzmania monostachia. This was achieved by making measurements at 77K when fluorescence emission bands from each type of chlorophyll protein complex can be distinguished. It was demonstrated that photochemistry and non-photochemical dissipation preferentially quench different emission bands and therefore occur by dissimilar mechanisms at separate sites. It was found that photochemistry was associated with a preferential quenching of emission at 688 nm whereas the spectrum for rapidly reversible non-photochemical quenching had maxima at 683 nm and 698 nm, suggesting selective quenching of the bands originating from the light harvesting complexes of Photosystem II. Further evidence that this was occurring in the light harvesting system was obtained from the fluorescence excitation spectra recorded in the quenched and relaxed states.Abbreviations pH
transthylakoid pH gradient
- Fo
minimum level of chlorophyll fluorescence when Photosystem II reaction centres are open
- Fm
maximum level of fluorescence when Photosystem II reaction centres are closed
- Fv
variable fluorescence Fm
minus Fo
- F'o
Fo in any quenched state
- Fm
Fm in any quenched state
- LHCII
light harvesting complexes of Photosystem II
- PSI
Photosystem I
- PS II
Photosystem II
- qN
non-photochemical quenching of chlorophyll fluorescence
- qE
non-photochemical quenching of chlorophyll fluorescence that occurs in the presence of a pH 相似文献
14.
Non-photochemical quenching of chlorophyll fluorescence (NPQ) and quantum yield of photosystem II (PSII) were studied with
intact mesophyll chloroplasts of maize (Zea mays L.) during the initial minutes of illumination using the pulse-modulated chlorophyll fluorescence technique. Non-photochemical
quenching was rapidly reversible in the dark at any point during illumination, which is indicative of energy-dependent dissipation
of energy (mediated via thylakoid ΔpH changes and ascorbate-dependent synthesis of zeaxanthin). In chloroplasts suspensions
including 15 mM ascorbate in the medium, with addition of oxaloacetate and pyruvate, the PSII yield, rate of reduction of
oxaloacetate and phosphorylation of pyruvate reached a maximum after approximately 2 min of illumination. Under these conditions,
which promote phosphorylation and a decreased ΔpH across the thylakoid membrane, NPQ rose to a maximum after 2–3 min of illumination,
dropped to a minimum after about 6 min, and then increased to a steady-state level. A rather similar pattern was observed
when leaves were illuminated following a 30-min dark period. Providing chloroplasts with higher levels of ascorbate (60 mM),
prevented the transient drop in NPQ. Anaerobic conditions or addition of potassium cyanide caused a decrease in PSII yield,
providing evidence for operation of the ascorbate-dependent Mehler-peroxidase reaction. These conditions also strongly suppressed
the transient drop in NPQ. Dithiothreitol, an inhibitor of violaxanthin de-epoxidase, caused a large drop in NPQ even in the
presence of high levels of ascorbate. The results suggest that the decline of NPQ occurs in response to an increase in lumen
pH after initiation of phosphorylation, that this decline can be suppressed by conditions where ascorbate is not limiting
for violaxanthin de-epoxidase, and that the increase of NPQ after such a decline is the result of development of energy dissipation
in PSII reaction centers.
Received: 13 August 1999 / Accepted: 17 September 1999 相似文献
15.
Cyanobacteria have previously been considered to differ fundamentally from plants and algae in their regulation of light harvesting. We show here that in fact the ecologically important marine prochlorophyte, Prochlorococcus, is capable of forming rapidly reversible non-photochemical quenching of chlorophyll a fluorescence (NPQf or qE) as are freshwater cyanobacteria when they employ the iron stress induced chlorophyll-based antenna, IsiA. For Prochlorococcus, the capacity for NPQf is greater in high light-adapted strains, except during iron starvation which allows for increased quenching in low light-adapted strains. NPQf formation in freshwater cyanobacteria is accompanied by deep Fo quenching which increases with prolonged iron starvation. 相似文献
16.
The response of a number of species to high light levels was examined to determine whether chlorophyll fluorescence from photosystem (PS) II measured at ambient temperature could be used quantitatively to estimate the photon yield of O2 evolution. In many species, the ratio of the yield of the variable (FV) and the maximum chlorophyll fluorescence (FM) determined from leaves at ambient temperature matched that from leaves frozen to 77K when reductions in FV/FM and the photon yield resulted from exposure of leaves to high light levels under favorable temperatures and water status. Under conditions which were less favorable for photosynthesis, FV/FM at ambient temperature often matched the photon yield more closely than FV/FM measured at 77K. Exposure of leaves to high light levels in combination with water stress or chilling stress resulted in much greater reductions in the photon yield than in FV/FM (at both ambient temperature and 77K) measured in darkness, which would be expected if the site of inhibition was beyond PSII. Following chilling stress, FV/FM determined during measurement of the photon yield in the light was depressed to a degree more similar to that of the depression of photon yield, presumably as a result of regulation of PSII in response to greatly reduced electron flow.Abbreviations and Symbols Fo
yield of instantaneous fluorescence
- FM
yield of maximum fluorescence
- FV
yield of variable fluorescence
- PFD
photon flux density (400–700 nm)
- PSI (II)
photosystem I (II)
This work was supported by the Deutsche Forschungsgemeinchaft. W.W.A. gratefully acknowledges the support of Fellowships from the North Atlantic Treaty Organization and the Alexander von Humboldt-Stiftung. We also thank Maria Lesch for plant maintenance. 相似文献
17.
The induction and relaxation of non-photochemical quenching (NPQ) under steady-state conditions, i.e. during up to 90 min of illumination at saturating light intensities, was studied in Arabidopsis thaliana. Besides the well-characterized fast qE and the very slow qI component of NPQ, the analysis of the NPQ dynamics identified a zeaxanthin (Zx) dependent component which we term qZ. The formation (rise time 10-15 min) and relaxation (lifetime 10-15 min) of qZ correlated with the synthesis and epoxidation of Zx, respectively. Comparative analysis of different NPQ mutants from Arabidopsis showed that qZ was clearly not related to qE, qT or qI and thus represents a separate, Zx-dependent NPQ component. 相似文献
18.
Lambrev PH Tsonev T Velikova V Georgieva K Lambreva MD Yordanov I Kovács L Garab G 《Photosynthesis research》2007,94(2-3):321-332
The kinetics of non-photochemical quenching (NPQ) of chlorophyll fluorescence was studied in pea leaves at different temperatures
between 5 and 25°C and during rapid jumps of the leaf temperature. At 5°C, NPQ relaxed very slowly in the dark and was sustained
for up to 30 min. This was independent of the temperature at which quenching was induced. Upon raising the temperature to
25°C, the quenched state relaxed within 1 min, characteristic for qE, the energy-dependent component of NPQ. Measurements
of the membrane permeability (ΔA515) in dark-adapted and preilluminated leaves and NPQ in the presence of dithiothreitol strongly suggest that the effect of
low temperature on NPQ was not because of limitation by the lumenal pH or the de-epoxidation state of the xanthophylls. These
data are consistent with the notion that the transition from the quenched to the unquenched state and vice versa involves
a structural reorganization in the photosynthetic apparatus. An eight-state reaction scheme for NPQ is proposed, extending
the model of Horton and co-workers (FEBS Lett 579:4201–4206, 2005), and a hypothesis is put forward concerning the nature of conformational changes associated with qE.
Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. 相似文献
19.
The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching. 相似文献
20.
Estimations of the changes in the reduction-oxidation state of Photosystem II electron acceptors in Phaseolus vulgaris leaves were made during the slow decline in chlorophyll fluorescence emission from the maximal level at P to the steady-state level at T. The relative contributions of photochemical and non-photochemical processes to the fluorescence quenching were determined from these data. At a low photon flux density of 100 μmol · m?2 · s?1, non-photochemical quenching was the major contributor to the fluorescence decline from P to T, although large charges were observed in photochemical quenching immediately after P. On increasing the light intensity 10-fold, the contribution of photochemical processes to fluorescence quenching was markedly diminished, with nearly all the P-to-T fluorescence decline being attributable to changes in non-photochemical quenching. The possible factors responsible for changes in non-photochemical quenching within the leaves are discussed. 相似文献