首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Automated segmentation and morphometry of fluorescently labeled cell nuclei in batches of 3D confocal stacks is essential for quantitative studies. Model-based segmentation algorithms are attractive due to their robustness. Previous methods incorporated a single nuclear model. This is a limitation for tissues containing multiple cell types with different nuclear features. Improved segmentation for such tissues requires algorithms that permit multiple models to be used simultaneously. This requires a tight integration of classification and segmentation algorithms. Two or more nuclear models are constructed semiautomatically from user-provided training examples. Starting with an initial over-segmentation produced by a gradient-weighted watershed algorithm, a hierarchical fragment merging tree rooted at each object is built. Linear discriminant analysis is used to classify each candidate using multiple object models. On the basis of the selected class, a Bayesian score is computed. Fragment merging decisions are made by comparing the score with that of other candidates, and the scores of constituent fragments of each candidate. The overall segmentation accuracy was 93.7% and classification accuracy was 93.5%, respectively, on a diverse collection of images drawn from five different regions of the rat brain. The multi-model method was found to achieve high accuracy on nuclear segmentation and classification by correctly resolving ambiguities in clustered regions containing heterogeneous cell populations.  相似文献   

2.
Automatic image segmentation of immunohistologically stained breast tissue sections helps pathologists to discover the cancer disease earlier. The detection of the real number of cancer nuclei in the image is a very tedious and time consuming task. Segmentation of cancer nuclei, especially touching nuclei, presents many difficulties to separate them by traditional segmentation algorithms. This paper presents a new automatic scheme to perform both classification of breast stained nuclei and segmentation of touching nuclei in order to get the total number of cancer nuclei in each class. Firstly, a modified geometric active contour model is used for multiple contour detection of positive and negative nuclear staining in the microscopic image. Secondly, a touching nuclei method based on watershed algorithm and concave vertex graph is proposed to perform accurate quantification of the different stains. Finally, benign nuclei are identified by their morphological features and they are removed automatically from the segmented image for positive cancer nuclei assessment. The proposed classification and segmentation schemes are tested on two datasets of breast cancer cell images containing different level of malignancy. The experimental results show the superiority of the proposed methods when compared with other existing classification and segmentation methods. On the complete image database, the segmentation accuracy in term of cancer nuclei number is over than 97%, reaching an improvement of 3–4% over earlier methods.  相似文献   

3.
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.  相似文献   

4.
[目的]具有复杂背景的蝴蝶图像前背景分割难度大.本研究旨在探索基于深度学习显著性目标检测的蝴蝶图像自动分割方法.[方法]应用DUTS-TR数据集训练F3Net显著性目标检测算法构建前背景预测模型,然后将模型用于具有复杂背景的蝴蝶图像数据集实现蝴蝶前背景自动分割.在此基础上,采用迁移学习方法,保持ResNet骨架不变,利...  相似文献   

5.
Digital image analysis of cell nuclei is useful to obtain quantitative information for the diagnosis and prognosis of cancer. However, the lack of a reliable automatic nuclear segmentation is a limiting factor for high-throughput nuclear image analysis. We have developed a method for automatic segmentation of nuclei in Feulgen-stained histological sections of prostate cancer. A local adaptive thresholding with an object perimeter gradient verification step detected the nuclei and was combined with an active contour model that featured an optimized initialization and worked within a restricted region to improve convergence of the segmentation of each nucleus. The method was tested on 30 randomly selected image frames from three cases, comparing the results from the automatic algorithm to a manual delineation of 924 nuclei. The automatic method segmented a few more nuclei compared to the manual method, and about 73% of the manually segmented nuclei were also segmented by the automatic method. For each nucleus segmented both manually and automatically, the accuracy (i.e., agreement with manual delineation) was estimated. The mean segmentation sensitivity/specificity were 95%/96%. The results from the automatic method were not significantly different from the ground truth provided by manual segmentation. This opens the possibility for large-scale nuclear analysis based on automatic segmentation of nuclei in Feulgen-stained histological sections.  相似文献   

6.
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.  相似文献   

7.
OBJECTIVE: To develop a method for the automated segmentation of images of routinely hematoxylin-eosin (H-E)-stained microscopic sections to guarantee correct results in computer-assisted microscopy. STUDY DESIGN: Clinical material was composed 50 H-E-stained biopsies of astrocytomas and 50 H-E-stained biopsies of urinary bladder cancer. The basic idea was to use a support vector machine clustering (SVMC) algorithm to provide gross segmentation of regions holding nuclei and subsequently to refine nuclear boundary detection with active contours. The initialization coordinates of the active contour model were defined using a SVMC pixel-based classification algorithm that discriminated nuclear regions from the surrounding tissue. Starting from the boundaries of these regions, the snake fired and propagated until converging to nuclear boundaries. RESULTS: The method was validated for 2 different types of H-E-stained images. Results were evaluated by 2 histopathologists. On average, 94% of nuclei were correctly delineated. CONCLUSION: The proposed algorithm could be of value in computer-based systems for automated interpretation of microscopic images.  相似文献   

8.
The segmentation accuracy of four fast and simple gray-scale threshold selection methods were compared using a data base of stained cervical cell images. Some postprocessing was applied to the segmented images to increase the accuracy of the nuclear segmentation. The most accurate method correctly segmented the cytoplasm of 81% of the cell images and the nuclei of 78% of the cell images in the data base.  相似文献   

9.
An automated procedure that refines the nuclear contour of a previously segmented nucleus is described. The algorithm makes use of intensity information, edge magnitude information and both object and edge connectivity information. This automated procedure generates a closed contour precisely along the edge of the nucleus. The procedure was tested on a database of 3,680 red-green-blue images of thionin-SO2 and orange II-stained cervical cells obtained from normal and dysplastic samples. When used in conjunction with a simple threshold selection algorithm and an artifact removal routine, this edge relocation algorithm resulted in the correct segmentation of over 98% of the nuclei. Only 63 (1.7%) of all nuclei were incorrectly segmented.  相似文献   

10.
11.
OBJECTIVE: To develop an automated, reproducible epithelial cell nuclear segmentation method to quantify cytologic features quickly and accurately from breast biopsy. STUDY DESIGN: The method, based on fuzzy c-mean clustering of the hue-band of color images and the watershed transform, was applied to 39 images from 3 histologic types (typical hyperplasia, atypical hyperplasia, and ductal carcinoma in situ [cribriform and solid]). RESULTS: The performance of the segmentation algorithm was evaluated by visually determining the percentage of badly segmented nuclei (approximately 25% for all types), the percentage of nuclei that remained in clumps (4.5-16.7%) and the percentage of missed nuclei (0.4-1.5%) for each image. CONCLUSION: The segmentation algorithm was sensitive in that a small percentage of nuclei were missed. However, the percentage of badly segmented nuclei was on the order of 25%, and the percentage of nuclei that remained in clumps was on the order of 10% of the total number of nuclei in the duct. Even so, > 600 nuclei per duct, on average, were segmented correctly; that was a sufficient number by which to calculate accurate quantitative, cytologic, morphometric measurements of epithelial cell nuclei in stained tissue sections of breast biopsy.  相似文献   

12.
13.
OBJECTIVE: To develop an image analysis system for automated nuclear segmentation and classification of histologic bladder sections employing quantitative nuclear features. STUDY DESIGN: Ninety-two cases were classified into three classes by experienced pathologists according to the WHO grading system: 18 cases as grade 1, 45 as grade 2, and 29 as grade 3. Nuclear segmentation was performed by means of an artificial neural network (ANN)-based pixel classification algorithm, and each case was represented by 36 nuclei features. Automated grading of bladder tumor histologic sections was performed by an ANN classifier implemented in a two-stage hierarchic tree. RESULTS: On average, 95% of the nuclei were correctly detected. At the first stage of the hierarchic tree, classifier performance in discriminating between cases of grade 1 and 2 and cases of grade 3 was 89%. At the second stage, 79% of grade 1 cases were correctly distinguished from grade 2 cases. CONCLUSION: The proposed image analysis system provides the means to reduce subjectivity in grading bladder tumors and may contribute to more accurate diagnosis and prognosis since it relies on nuclear features, the value of which has been confirmed.  相似文献   

14.
A computer-aided diagnosis system was developed for assisting brain astrocytomas malignancy grading. Microscopy images from 140 astrocytic biopsies were digitized and cell nuclei were automatically segmented using a Probabilistic Neural Network pixel-based clustering algorithm. A decision tree classification scheme was constructed to discriminate low, intermediate and high-grade tumours by analyzing nuclear features extracted from segmented nuclei with a Support Vector Machine classifier. Nuclei were segmented with an average accuracy of 86.5%. Low, intermediate, and high-grade tumours were identified with 95%, 88.3%, and 91% accuracies respectively. The proposed algorithm could be used as a second opinion tool for the histopathologists.  相似文献   

15.
BACKGROUND: Confocal laser scanning microscopy (CLSM) presents the opportunity to perform three-dimensional (3D) DNA content measurements on intact cells in thick histological sections. So far, these measurements have been performed manually, which is quite time-consuming. METHODS: In this study, an intuitive contour-based segmentation algorithm for automatic 3D CLSM image cytometry of nuclei in thick histological sections is presented. To evaluate the segmentation algorithm, we measured the DNA content and volume of human liver and breast cancer nuclei in 3D CLSM images. RESULTS: A high percentage of nuclei could be segmented fully automatically (e.g., human liver, 92%). Comparison with (time-consuming) interactive measurements on the same CLSM images showed that the results were well correlated (liver, r = 1.00; breast, r = 0.92). CONCLUSIONS: Automatic 3D CLSM image cytometry enables measurement of volume and DNA content of large numbers of nuclei in thick histological sections within an acceptable time. This makes large-scale studies feasible, whereby the advantages of CLSM can be exploited fully. The intuitive modular segmentation algorithm presented in this study detects and separates overlapping objects, also in two-dimensional (2D) space. Therefore, this algorithm may also be suitable for other applications.  相似文献   

16.
Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system’s uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.  相似文献   

17.
A new TRIO algorithm method integrating three different algorithms is proposed to perform brain MRI segmentation in the native coordinate space, with no need of transformation to a standard coordinate space or the probability maps for segmentation. The method is a simple voxel-based algorithm, derived from multispectral remote sensing techniques, and only requires minimal operator input to depict GM, WM, and CSF tissue clusters to complete classification of a 3D high-resolution multislice-multispectral MRI data. Results showed very high accuracy and reproducibility in classification of GM, WM, and CSF in multislice-multispectral synthetic MRI data. The similarity indexes, expressing overlap between classification results and the ground truth, were 0.951, 0.962, and 0.956 for GM, WM, and CSF classifications in the image data with 3% noise level and 0% non-uniformity intensity. The method particularly allows for classification of CSF with 0.994, 0.961 and 0.996 of accuracy, sensitivity and specificity in images data with 3% noise level and 0% non-uniformity intensity, which had seldom performed well in previous studies. As for clinical MRI data, the quantitative data of brain tissue volumes aligned closely with the brain morphometrics in three different study groups of young adults, elderly volunteers, and dementia patients. The results also showed very low rates of the intra- and extra-operator variability in measurements of the absolute volumes and volume fractions of cerebral GM, WM, and CSF in three different study groups. The mean coefficients of variation of GM, WM, and CSF volume measurements were in the range of 0.03% to 0.30% of intra-operator measurements and 0.06% to 0.45% of inter-operator measurements. In conclusion, the TRIO algorithm exhibits a remarkable ability in robust classification of multislice-multispectral brain MR images, which would be potentially applicable for clinical brain volumetric analysis and explicitly promising in cross-sectional and longitudinal studies of different subject groups.  相似文献   

18.
基于不同决策树的面向对象林区遥感影像分类比较   总被引:1,自引:0,他引:1  
陈丽萍  孙玉军 《生态学杂志》2018,29(12):3995-4003
面向地理对象影像分析技术(GEOBIA)是影像分辨率越来越高的背景下的产物.如何提高高分辨率影像分类精度和分类效率是影像处理的重要议题之一.本研究对QuickBird影像多尺度分割后的对象进行分类,分析了C5.0、C4.5、CART决策树算法在林区面向对象分类中的效率,并与kNN算法的分类精度进行比较.利用eCognition软件对遥感影像进行多尺度分割,分析得到最佳尺度为90和40.在90尺度下分离出植被和非植被后,在40尺度下提取不同类别植被的光谱、纹理、形状等共21个特征,并利用C5.0、C4.5、CART决策树算法分别对其进行知识挖掘,自动建立分类规则.最后利用建立的分类规则分别对植被区域进行分类,并比较分析其精度.结果表明: 基于决策树的分类精度均高于传统的kNN法.其中,C5.0方法的精度最高,其总体分类精度为90.0%,Kappa系数0.87.决策树算法能有效提高林区树种分类精度,且C5.0决策树的Boosting算法对该分类效果具有最明显的提升.  相似文献   

19.
Software was developed for the acquisition, segmentation and analysis of microscopic OD-images on a VICOM digital image processor, extended with a VISIOMORPH morphoprocessor board. The delineation algorithms for peroxisomes, lysosomes, and nuclei in liver, kidney, and adrenal gland sections start by thresholding the difference between the original image and a low pass filtered version. The resulting binary mask is then processed by morphological operations in order to produce an object overlay. The efficiency of the programs is evaluated by comparing delineated objects at different OD-levels, created by varying the stain or by multiplying the original pixel values with constant factors. Manual delineation on some images is also used as a reference. More complex algorithms are used for the delineation of muscle fibres in ATP-ase-stained sections and immunocytochemically labelled cells in monolayer preparations. Muscle images from parallel sections with different stainings are matched with a coordinate transform, enabling the transfer of the object mask from a single delineated image to the unprocessed images and thus obtain all necessary information for fibre classification. After segmentation, the OD-images and their object overlays are fed into a data extraction program, measuring for each delineated object user-selected features. Data are sent to a VAX for statistical interpretation.  相似文献   

20.
A methodology was developed for fully automated measurements of nuclear features in Feulgen-stained tissue sections by means of videomicroscopy and image analysis. Segmentation is performed within one minute on 512 X 512 optical density (OD) images covering about 75 nuclei, resulting in a graphic contour overlay. The corresponding image subset is scanned by an object data extraction program, producing the raw figures for statistical interpretation. The segmentation software was evaluated by three tests, involving comparison with manual delineation and assessment of the influence of OD. Two case studies (ACTH-stimulated adrenal cortex and pancreatic carcinoma) illustrate the biologic accuracy and medical significance of the described methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号