首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid and fatty acid analyses were performed on whole leaf extracts and isolated thylakoids from winter rye (Secale cereale L. cv Puma) grown at 5°C cold-hardened rye (RH) and 20°C nonhardened rye (RNH). Although no significant change in total lipid content was observed, growth at low, cold-hardening temperature resulted in a specific 67% (thylakoids) to 74% (whole leaves) decrease in the trans3-hexadecenoic acid (trans-16:1) level associated with phosphatidyldiacylglycerol (PG). Electron spin resonance and differential scanning calorimetry (DSC) indicated no significant difference in the fluidity of RH and RNH thylakoids. Separation of chlorophyll-protein complexes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the ratio of oligomeric light harvesting complex:monomeric light harvesting complex (LHCII1:LHCII3) was 2-fold higher in RNH than RH thylakoids. The ratio of CP1a:CP1 was also 1.5-fold higher in RNH than RH thylakoids. Analyses of winter rye grown at 20, 15, 10, and 5°C indicated that both, the trans-16:1 acid levels in PG and the LHCII1:LHCII3 decreased concomitantly with a decrease in growth temperature. Above 40°C, differential scanning calorimetry of RNH thylakoids indicated the presence of five major endotherms (47, 60, 67, 73, and 86°C). Although the general features of the temperature transitions observed above 40°C in RH thylakoids were similar to those observed for RNH thylakoids, the transitions at 60 and 73°C were resolved as inflections only and RH thylakoids exhibited transitions at 45 and 84°C which were 2°C lower than those observed in RNH thylakoids. Since polypeptide and lipid compositions of RH and RNH thylakoids were very similar, we suggest that these differences reflect alterations in thylakoid membrane organization. Specifically, it is suggested that low developmental temperature modulates LHCII organization such that oligomeric LHCII predominates in RNH thylakoids whereas a monomeric or an intermediate form of LHCII predominates in RH thylakoids. Furthermore, we conclude that low developmental temperature modulates LHCII organization by specifically altering the fatty composition of thylakoid PG.  相似文献   

2.
Changes in water content and dry weight were determined in control cells and those induced to cold harden in response to abscisic acid (ABA) treatment (7.5 × 10−5 molar). Bromegrass (Bromus inermis Leyss cv Manchar) cells grown in suspension culture at room temperature (23°C) for 7 days acclimated to −28°C (LT50) when treated with ABA, or to −5°C when untreated. ABA significantly reduced cell growth rates at 5 and 7 days after treatment. Growth reduction was due to a decrease in cell number rather than cell size. When the cell water content was expressed as percent water (percent H2O) or as grams water per gram dry weight (gram H2O/gram dry weight [g DW]), the water content of hardy, ABA-treated cells decreased from 85% to 77% or from 6.4 to 3.3 g H2O/g DW in 7 days. Control cell water content remained static at approximately 87% and 7.5 g H2O/g DW. However, cell water content, expressed as milligrams water per million cells (milligram H2O/106 cells), did not differ in ABA-treated or control cells. The dry matter content of ABA-treated cells, expressed as milligram DW/106 cells increased to 3.3 milligram/106 cells in 7 days, whereas the dry weight of the control cells remained between 1.4 to 2.1 milligrams/106 cells. The osmotic potential of ABA-treated cells decreased by the fifth day while that of control cells increased significantly and then decreased by day 7. Elevated osmotic potentials were not associated with increased ion uptake. In contrast to much published literature, these results suggest that cell water content does not decrease in ABA-treated cells during the induction of freezing tolerance, rather the dry matter mass per cell increased. Cell water content may be more accurately expressed as a function of cell number when accompanying changes to dry cell matter occur.  相似文献   

3.
4.
A detailed analysis of cold acclimation of a winter rye (Secale cereale L. cv Puma), a winter oat (Avena sativa L. cv Kanota), and a spring oat cultivar (Ogle) revealed that freezing injury of leaves of nonacclimated seedlings occurred at -2[deg]C in both the winter and spring cultivars of oat but did not occur in winter rye leaves until after freezing at -4[deg]C. The maximum freezing tolerance was attained in all cultivars after 4 weeks of cold acclimation, and the temperature at which 50% electrolyte leakage occurred decreased to -8[deg]C for spring oat, -10[deg]C for winter oat, and -21[deg]C for winter rye. In protoplasts isolated from leaves of nonacclimated spring oat, expansion-induced lysis was the predominant form of injury over the range of -2 to -4[deg]C. At temperatures lower than -4[deg]C, loss of osmotic responsiveness, which was associated with the formation of the hexagonal II phase in the plasma membrane and subtending lamellae, was the predominant form of injury. In protoplasts isolated from leaves of cold-acclimated oat, loss of osmotic responsiveness was the predominant form of injury at all injurious temperatures; however, the hexagonal II phase was not observed. Rather, injury was associated with the occurrence of localized deviations of the plasma membrane fracture plane to closely appressed lamellae, which we refer to as the "fracture-jump lesion." Although the freeze-induced lesions in the plasma membrane of protoplasts of spring oat were identical with those reported previously for protoplasts of winter rye, they occurred at significantly higher temperatures that correspond to the lethal freezing temperature.  相似文献   

5.
以生菜(Lactuca sativa)种子为研究对象,通过不同时间的吸水处理分析其含水量变化,再通过程序降温处理,分析不同含水量种子发芽率的差异,以及脂肪酸合成有关基因(FAD2、FAD3、PPT、ELOVL)和冷调节基因ICE1的表达。结果表明,种子含水量随吸水时间增加而升高。程序降温至同样的低温冷冻条件下(-20℃、-22℃),吸水时间小于6 h的种子发芽率较高,而吸水8 h以上的种子发芽率显著降低。种子吸水8 h含水量处于饱和状态,在此状态下种子对低温较为敏感,说明含水量对种子耐冻性有影响。冷冻处理后生菜种子基因表达检测结果表明,脂肪酸去饱和酶基因(FAD2、FAD3)、蛋白质棕榈酰基硫脂酶相关基因(PPT)、长链脂肪酸延伸酶相关基因(ELOVL)的表达水平均随着种子含水量增加呈上升趋势,吸胀10 h的种子表达量最高,此时种子由于高含水量所受冷冻伤害最大。基因ICE1在冷冻处理种子中的表达也随着吸水时间增加而升高,在吸水10 h时种子中表达量到最高水平。综上,种子含水量越高,所受冷冻伤害越大。但种子在低温条件下具有一定的抗冷反应,可通过相关基因的过表达调控合成更多不饱和脂肪酸、抗冻蛋白等提高含水种子耐冻性。  相似文献   

6.
7.
In this investigation, we examined the effects of different unsaturated fatty acid compositions of Saccharomyces cerevisiae on the growth-inhibiting effects of ethanol. The unsaturated fatty acid (UFA) composition of S. cerevisiae is relatively simple, consisting almost exclusively of the mono-UFAs palmitoleic acid (Δ9Z-C16:1) and oleic acid (Δ9Z-C18:1), with the former predominating. Both UFAs are formed in S. cerevisiae by the oxygen- and NADH-dependent desaturation of palmitic acid (C16:0) and stearic acid (C18:0), respectively, catalyzed by a single integral membrane desaturase encoded by the OLE1 gene. We systematically altered the UFA composition of yeast cells in a uniform genetic background (i) by genetic complementation of a desaturase-deficient ole1 knockout strain with cDNA expression constructs encoding insect desaturases with distinct regioselectivities (i.e., Δ9 and Δ11) and substrate chain-length preferences (i.e., C16:0 and C18:0); and, (ii) by supplementation of the same strain with synthetic mono-UFAs. Both experimental approaches demonstrated that oleic acid is the most efficacious UFA in overcoming the toxic effects of ethanol in growing yeast cells. Furthermore, the only other UFA tested that conferred a nominal degree of ethanol tolerance is cis-vaccenic acid (Δ11Z-C18:1), whereas neither Δ11Z-C16:1 nor palmitoleic acid (Δ9Z-C16:1) conferred any ethanol tolerance. We also showed that the most ethanol-tolerant transformant, which expresses the insect desaturase TniNPVE, produces twice as much oleic acid as palmitoleic acid in the absence of ethanol and undergoes a fourfold increase in the ratio of oleic acid to palmitoleic acid in response to exposure to 5% ethanol. These findings are consistent with the hypothesis that ethanol tolerance in yeast results from incorporation of oleic acid into lipid membranes, effecting a compensatory decrease in membrane fluidity that counteracts the fluidizing effects of ethanol.  相似文献   

8.
Cereals are grown in almost every region of the world and are exposed to a variety of environmental stresses that severely affect their growth and grain yield. Of various abiotic stresses, salinity is one of the more significant threats to cereal crops. To ensure food security, there is a need to adopt strategies to overcome this specific threat. Undoubtedly, plant scientists have been exploiting a variety of approaches to achieve enhanced crop productivity on salt affected soils. Of the various biotic approaches, conventional breeding, marker-assisted selection and genetic engineering to develop salt-tolerant lines/cultivars of cereals all seem plausible. Some success stories have been reported for improvement in salt tolerance of wheat and rice, but are scarce for other cereals. A number of barriers to the development of salt-tolerant cultivars/lines have been identified and include a lack of knowledge about the genetics of crops, their physiological and biochemical behavior, wide variation in environmental conditions, and the complex polygenic nature of the salt tolerance character. This review focuses on how improvements have been made in salt tolerance in cereals through different biotic means, such as conventional breeding, marker assisted selection and genetic engineering.  相似文献   

9.
Highly expressed plastid genes display codon adaptation, which is defined as a bias toward a set of codons which are complementary to abundant tRNAs. This type of adaptation is similar to what is observed in highly expressed Escherichia coli genes and is probably the result of selection to increase translation efficiency. In the current work, the codon adaptation of plastid genes is studied with regard to three specific features that have been observed in E. coli and which may influence translation efficiency. These features are (1) a relatively low codon adaptation at the 5′ end of highly expressed genes, (2) an influence of neighboring codons on codon usage at a particular site (codon context), and (3) a correlation between the level of codon adaptation of a gene and its amino acid content. All three features are found in plastid genes. First, highly expressed plastid genes have a noticeable decrease in codon adaptation over the first 10–20 codons. Second, for the twofold degenerate NNY codon groups, highly expressed genes have an overall bias toward the NNC codon, but this is not observed when the 3′ neighboring base is a G. At these sites highly expressed genes are biased toward NNT instead of NNC. Third, plastid genes that have higher codon adaptations also tend to have an increased usage of amino acids with a high G + C content at the first two codon positions and GNN codons in particular. The correlation between codon adaptation and amino acid content exists separately for both cytosolic and membrane proteins and is not related to any obvious functional property. It is suggested that at certain sites selection discriminates between nonsynonymous codons based on translational, not functional, differences, with the result that the amino acid sequence of highly expressed proteins is partially influenced by selection for increased translation efficiency. Received: 21 July 1999 / Accepted: 5 November 1999  相似文献   

10.
脂肪酸代谢紊乱是Ⅱ型糖尿病的主要致病因素之一。棕榈酸是血液中含量最高的游离脂肪酸。我们建立了大鼠颈静脉置管输注棕榈酸的模型,发现血液中的大部分棕榈酸被骨骼肌组织所吸收。以棕榈酸处理的C2C12骨骼肌细胞为实验模型发现,棕榈酸进入骨骼肌细胞后的中间代谢产物(磷脂和甘油二酯)的累积,会造成内质网应激及胰岛素抵抗。提示血液中棕榈酸含量的升高可能通过骨骼肌的胰岛素抵抗机制,影响Ⅱ型糖尿病的发生和发展。  相似文献   

11.
Loik ME  Nobel PS 《Plant physiology》1993,103(3):871-876
The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States.  相似文献   

12.
Cellular and extracellular protein profiles from Bromus inermis Leyss. cv Manchar cell suspension cultures cold hardened by low temperature and abscisic acid (ABA) treatment were analyzed by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellular proteins (25, 165, 190, and 200 kilodaltons) increased by low temperature growth and cellular proteins (20, 25, 28, 30, 32, 37, 40, 45, 200 kilodaltons) increased by exogenous ABA treatment were identified. Low temperature treatment inhibited the synthesis of a 22 kilodalton protein and ABA treatment resulted in the synthesis of two extracellular proteins (17 and 21 kilodaltons). Low temperature and ABA-induced hardening conditions increased or induced a 25 and a 200 kilodalton protein. The 25 and a 30 kilodalton protein previously shown to be enriched by ABA-induced hardening conditions at both 3 and 23°C temperatures co-fractionated with the crude membrane fraction (30,000g sediment). The 200 kilodalton protein was detected in the 30,000g supernatant. Two-dimensional analysis of the crude membrane fraction resolved the 30 kilodalton protein band into a major polypeptide with an apparent isoelectric point of 6.85.  相似文献   

13.
Cold-Induced Freezing Tolerance in Arabidopsis   总被引:34,自引:0,他引:34  
Changes in the physiology of plant leaves are correlated with enhanced freezing tolerance and include accumulation of compatible solutes, changes in membrane composition and behavior, and altered gene expression. Some of these changes are required for enhanced freezing tolerance, whereas others are merely consequences of low temperature. In this study we demonstrated that a combination of cold and light is required for enhanced freezing tolerance in Arabidopsis leaves, and this combination is associated with the accumulation of soluble sugars and proline. Sugar accumulation was evident within 2 h after a shift to low temperature, which preceded measured changes in freezing tolerance. In contrast, significant freezing tolerance was attained before the accumulation of proline or major changes in the percentage of dry weight were detected. Many mRNAs also rapidly accumulated in response to low temperature. All of the cold-induced mRNAs that we examined accumulated at low temperature even in the absence of light, when there was no enhancement of freezing tolerance. Thus, the accumulation of these mRNAs is insufficient for cold-induced freezing tolerance.  相似文献   

14.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   

15.
The membrane composition of Zymomonas mobilis changed dramatically in response to growth temperature. With increasing temperature, the proportion of vaccenic acid declined with an increase in myristic acid, the proportion of phosphatidylcholine and cardiolipin increased with decreases in phosphatidylethanolamine and phosphatidylglycerol, and the phospholipid/protein ratio of the membrane declined. These changes in membrane composition were correlated with changes in thermal tolerance and with changes in membrane fluidity. Cells grown at 20°C were more sensitive to inactivation at 45°C than were cells grown at 30°C, as expected. However, cells grown at 41°C (near the maximal growth temperature for Z. mobilis) were hypersensitive to thermal inactivation, suggesting that cells may be damaged during growth at this temperature. When cells were held at 45°C, soluble proteins from cells grown at 41°C were rapidly lost into the surrounding buffer in contrast to cells grown at lower temperatures. The synthesis of phospholipid-deficient membranes during growth at 41°C was proposed as being responsible for this increased thermal sensitivity.  相似文献   

16.
17.
Betaine Improves Freezing Tolerance in Wheat   总被引:20,自引:0,他引:20  
The accumulation of the osmolyte betaine was found to be correlatedwith the development of freezing tolerance (FT) of two wheatcultivars where it increases by about three fold during thecold acclimation period. Exogenous betaine application resultedin a large increase in total osmolality mostly due to betaineaccumulation. Plants that accumulated betaine are more tolerantto freezing stress since a four day exposure to 250 mM betaineresulted in a LT50 of –8°C (in spring wheat Glenlea)and –9°C (in winter wheat Fredrick) compared to –3°C(Glenlea) and –4°C (Fredrick) for control non-exposedplants. Betaine treatment (250 mM) during cold acclimation increasedFT in an additive manner since the LT50 reached –14°C(Glenlea) and –22°C (Fredrick) compared to –8°C(Glenlea) and –16°C (Fredrick) for plants that arecold acclimated in the absence of betaine. These results showthat betaine treatment can improve FT by more than 5°C inboth non-acclimated and cold-acclimated plants. The betainetreatment resulted in the induction of a subset of low temperatureresponsive genes, such as the wcor410, and wcor413, that arealso induced by salinity or drought stresses. In addition tothese genetic responses, betaine treatment was also able toimprove the tolerance to photoin-hibition of PSII and the steady-stateyield of electron transport over PSII in a manner that mimickedcold-acclimated plants. These data also suggest that betaineimproves FT by eliciting some of the genetic and physiologicalresponses associated with cold acclimation. (Received April 23, 1998; Accepted September 4, 1998)  相似文献   

18.
Brassica napus suspension-cultured cells could be hardened in 6 days at 25°C by the addition of mefluidide or ABA to the culture medium. Cells treated with mefluidide (10 milligrams per liter) or ABA (50 micromolar) attained an LT50 of −17.5°C or −18°C, respectively, while the LT50 for the comparable nonhardened control (sucrose) was −10°C. The increased freezing tolerance of mefluidide-treated cells was paralleled by a 4- to 23-fold increase in ABA, as measured by gas-liquid chromatography using electron capture detection. Application of 1 milligram per liter of fluridone, an inhibitor of abscisic acid biosynthesis, prevented the mefluidide-induced increase in freezing tolerance and the accumulation of ABA. Both these inhibitory effects of fluridone were overridden by 50 micromolar ABA in the culture medium. On the basis of these results, we concluded that increased ABA levels are important for the induction of freezing tolerance in suspension-cultured cells.  相似文献   

19.
Previous observations that aquaporin overexpression increases the freeze tolerance of baker's yeast (Saccharomyces cerevisiae) without negatively affecting the growth or fermentation characteristics held promise for the development of commercial baker's yeast strains used in frozen dough applications. In this study we found that overexpression of the aquaporin-encoding genes AQY1-1 and AQY2-1 improves the freeze tolerance of industrial strain AT25, but only in small doughs under laboratory conditions and not in large doughs under industrial conditions. We found that the difference in the freezing rate is apparently responsible for the difference in the results. We tested six different cooling rates and found that at high cooling rates aquaporin overexpression significantly improved the survival of yeast cells, while at low cooling rates there was no significant effect. Differences in the cultivation conditions and in the thawing rate did not influence the freeze tolerance under the conditions tested. Survival after freezing is determined mainly by two factors, cellular dehydration and intracellular ice crystal formation, which depend in an inverse manner on the cooling velocity. In accordance with this so-called two-factor hypothesis of freezing injury, we suggest that water permeability is limiting, and therefore that aquaporin function is advantageous, only under rapid freezing conditions. If this hypothesis is correct, then aquaporin overexpression is not expected to affect the leavening capacity of yeast cells in large, industrial frozen doughs, which do not freeze rapidly. Our results imply that aquaporin-overexpressing strains have less potential for use in frozen doughs than originally thought.  相似文献   

20.
Treatments as diverse as exposure to low temperature (LT), exogenous abscisic acid (ABA), or drought resulted in a 4 to 5[deg]C increase in freezing tolerance of the annual herbaceous plant Arabidopsis thaliana. To correlate the increase in freezing tolerance with the physiological changes that occur in response to these treatments, we studied the alterations in water status, endogenous ABA levels, and accumulation of rab18 (V. Lang and E.T. Palva [1992] Plant Mol Biol 20: 951-962) mRNA. Exposure to LT and exogenous ABA caused only a minor decline in total water potential ([psi]w), in contrast to a dramatic decrease in [psi]w during drought stress. Similarly, the endogenous ABA levels were only slightly and transiently increased in LT-treated plants in contrast to a massive increase in ABA levels in drought-stressed plants. The expression of the ABA-responsive rab18 gene was low during the LT treatment but could be induced to high levels by exogenous ABA and drought stress. Taken together, these results suggest that the moderate increases in freezing tolerance of A. thaliana might be achieved by different mechanisms. However, ABA-deficient and ABA-insensitive mutants of A. thaliana have impaired freezing tolerance, suggesting that ABA is, at least indirectly, required for the development of full freezing tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号