首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of defense-related enzymes, such as phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD) and catalase (CAT) due to bacterial antagonists viz., Pseudomonas fluorescens (Pf1) and Bacillus subtilis (EPCO16) and plant-derived lipoxygenase volatile compound hexanal, were studied in mango fruits against Lasiodiplodia theobromae causing stem-end rot disease. The results showed increased induction of all the defense-related enzymes in mango fruits 3–5 days after dipping treatment with combination of bacterial antagonists and hexanal when compared to untreated control treatment and treatment with fungicide carbendazim in storage condition. The increased activity was observed up to 3 days after treatment and thereafter declined. Further, increased expression of specific isoforms of PO, PPO, SOD and CAT were also observed in the treatment effect of P. fluorescens (0.5%)?+?hexanal (0.02%) treated fruits against L. theobromae. From the results obtained, it is inferred that due to the enhancement of defense-related enzymes via the phenylpropanoid pathway and due to secretion of secondary metabolites that would play significant role in hindering the pathogen quiescence and further invasion in mango fruits and thereby prevent the fruit rot.  相似文献   

2.
A total of 72 plant extracts were tested in vitro for their ability to inhibit the mycelial growth of Lasiodiplodia theobromae and Colletotrichum musae the causal agents of crown rot disease of banana. The results showed that the leaf extract of Zimmu (an interspecific hybrid of Allium cepa L. × Allium sativum L.) and tuber extract of Zehneria scabra recorded maximum inhibition of mycelial growth and spore germination of both the test pathogens. The dipping of banana fruits in Zimmu leaf extract at 25% conc. exhibited 100% inhibition of crown rot disease in cold storage (14 °C) up to 35 days and increased the shelf life to 64 days. However, at room storage (28 ± 2 °C), the same treatment exhibited 86% inhibition of crown rot disease up to 12 days. It was found that the treatment of banana fruits with Zimmu leaf extract did not alter the organoleptic properties of banana. The biochemical analysis of banana fruits treated with Zimmu leaf extract showed significant increase in phenylalanine ammonia-lyase (PAL), chitinase and β-1,3-glucanase activities and enhanced accumulation of phenolic compounds compared to other treatments. These findings suggest that the effect of Zimmu leaf extract on crown rot disease may be associated with the direct fungi toxic property against the test pathogens and elicitation of defense related compounds in banana fruits.  相似文献   

3.
Basal rot disease of onion is a major problem in different onion growing regions of Tamil Nadu, India. Fungal and bacterial cultures were isolated and tested their efficiency against Fusarium oxysporum f. sp. cepae under in vitro conditions. Effective bacterial and fungal antagonists were tested alone and in combinations for the control of F. oxysporum f. sp. cepae in glasshouse experiments. Defence-related enzymes such as peroxidase, polyphenol oxidase and phenylalanine ammonia-lyase were induced and accumulated in onion treated with fungal and bacterial antagonists. Defence-related enzymes were significantly higher in onion pretreated with consortial formulation of Pf12 + Pf27 + TH3 at 5 days after the challenge inoculation with F. oxysporum f. sp. cepae and gave resistance to onion against basal rot disease.  相似文献   

4.
Abstract

Fluorescent pseudomonads based bioformulation was evaluated for their ability to control Macrophomina root rot disease in mungbean (Vigna mungo). P. fluorescens isolate Pf1 showed the maximum inhibition in mycelial growth of Macrophomina phaseolina under in vitro conditions. Bioformulation of Pf1 with chitin was effective in reducing the root rot incidence in green gram both under glasshouse and field conditions. The rhizosphere colonization of P. fluorescens was observed appreciable with the green gram plants. However, Pf1 amended with chitin colonized effectively. Furthermore, the induction of defence-related enzymes and chemicals in plants by Pf1 amended with or without chitin and neem were tested. Increased accumulation of defence enzymes viz., phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO), chitinase, β-1,3-glucanse and phenolics were observed in Pf1 bioformulation amended with chitin, pre-treated plants challenge inoculated with M. phaseolina under glasshouse conditions. The present study reveals that in addition to direct antagonism and plant-growth promotion, PGPR strains amended with chitin bioformulation induced defence-related enzymes and pathogenesis related (PR) proteins which collectively enhance the resistance in green gram against the infection of M. phaseolina.  相似文献   

5.
The efficacy of eight fungal and eight bacterial isolates was tested for their ability to inhibit the growth of Sclerotium rolfsii, the causal agent of collar rot of peppermint. In vitro studies revealed that Trichoderma harzianum (THA) and Pseudomonas fluorescens (PFM) showed the highest inhibition of mycelial growth (68.28; 74.25 %) of S. rolfsii. The antagonists T. harzianum and P. fluorescens were compatible with each other and they were tested alone and together in in vivo for the control of S. rolfsii. Besides, the induction of defense-related enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, and the accumulation of phenolics in peppermint plants due to the application of bioagents were also studied. Combined application of talc-based formulation of bioagents and challenge inoculation with S. rolfsii recorded maximum induction of defense-related enzymes, and accumulation of phenolics as compared with individual application. This study suggests that the increased induction of defense-related enzymes (two- to threefold) and phenolic content (threefold) due to the combination treatment of bioagents might be involved in the reduction of collar rot incidence.  相似文献   

6.
The postharvest development of crown rot of bananas depends notably on the fruit susceptibility to this disease at harvest. It has been shown that fruit susceptibility to crown rot is variable and it was suggested that this depends on environmental preharvest factors. However, little is known about the preharvest factors influencing this susceptibility. The aim of this work was to evaluate the extent to which fruit filling characteristics during growth and the fruit development stage influence the banana susceptibility to crown rot. This involved evaluating the influence of (a) the fruit position at different levels of the banana bunch (hands) and (b) changing the source–sink ratio (So–Si ratio), on the fruit susceptibility to crown rot. The fruit susceptibility was determined by measuring the internal necrotic surface (INS) after artificial inoculation of Colletotrichum musae. A linear correlation (r = −0.95) was found between the hand position on the bunch and the INS. The So–Si ratio was found to influence the pomological characteristics of the fruits and their susceptibility to crown rot. Fruits of bunches from which six hands were removed (two hands remaining on the bunch) proved to be significantly less susceptible to crown rot (INS = 138.3 mm 2) than those from bunches with eight hands (INS = 237.9 mm 2). The banana susceptibility to crown rot is thus likely to be influenced by the fruit development stage and filling characteristics. The present results highlight the importance of standardising hand sampling on a bunch when testing fruit susceptibility to crown rot. They also show that hand removal in the field has advantages in the context of integrated pest management, making it possible to reduce fruit susceptibility to crown rot while increasing fruit size.  相似文献   

7.
Plant products along with biocontrol agents were tested against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense (Foc). Of the 22 plant species tested, the leaf extract of Datura metel (10%) showed complete inhibition of the mycelial growth of Foc. Two botanical fungicides, Wanis 20 EC and Damet 50 EC along with selected PGPR strains with known biocontrol activity, Pseudomonas fluorescens 1, Pf1 and Bacillus subtilis, TRC 54 were tested individually and in combination for the management of Fusarium wilt under greenhouse and field conditions. Combined application of botanical formulation and biocontrol agents (Wanis 20 EC + Pf1 + TRC 54) reduced the wilt incidence significantly under greenhouse (64%) and field conditions (75%). Reduction in disease incidence was positively correlated with the induction of defense-related enzymes peroxidase (PO) and polyphenol oxidase (PPO). Three antifungal compounds (two glycosides and one ester) in D. metel were separated and identified using TLC, RP-HPLC (Reverse Phase-High Pressure Liquid Chromatography) and mass spectrometry. In this study it is clear that combined application of botanical formulations and biocontrol agents can be very effective in the management of Fusarium wilt of banana.  相似文献   

8.
Thirteen Beauveria strains were isolated from the soil and infected insects. Among the various isolates, B2 isolate (Arachalore) showed a higher percentage of mortality against C. medinalis (73.3%) under in vitro conditions. Conidial concentration of 1 × 108 of the B2 strain registered maximum mortality of 76.7%. The least LT50 value of 4.4 days was registered in B2 isolate with the spore concentration of 1 × 108 and the LC50 value was 3.4 × 104. Beauveria strains altered the feeding behavior of C. medinalis, reduced the pupal weight, prolonged the pupation period, malformed the pupa and adult under in vitro. The efficacy of the talc-based bioformulation of Beauveria (B2) strain was tested as seed treatment + seedling dip + soil application + foliar spray against rice leaffolder under in vitro and greenhouse conditions. The percentage damage was significantly less (5.5) in B2 as compared to untreated healthy control (25.8). In addition, the same treatment increased the activities of defense-related enzymes, namely peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, chitinase, and phenolics in rice.  相似文献   

9.
The antagonistic activity of two yeast strains (Pichia anomala (E.C. Hansen) Kurtzman, strain K and Candida oleophila Montrocher, strain O) against the parasitic complex responsible for banana crown rot was evaluated. The strains were applied at three different concentrations (106, 107, 108 cfu/ml) and their efficacy tested in vivo on three separate fungi (Colletotrichum musae (Berk. & Curt.) Arx, Fusarium moniliforme Sheldon, and Cephalosporium sp.) and on a parasitic complex formed by association of these three fungi. At the concentrations used C. musae appeared to be the most pathogenic. The complex showed intermediate aggressiveness between C. musae and both other fungi.Statistically significant antagonistic effects were observed on C. musae, F. moniliforme, and the fungal complex. The highest protection level (54.4%) was observed with strain O added at 108 cfu/ml on crowns previously inoculated with the fungal complex. The level was lower when the fungi were inoculated separately.Furthermore, the antagonistic effect was strongly reinforced when strain O at 108 cfu/ml was applied 24 h before fungal complex inoculation (59.9%), as compared to its application 15 min (24.3%) or 3 h (27.3%) after fungal complex inoculation. Bananas showed increased susceptibility to the fungal complex from March to June, and this influenced the level of protection by yeast, which decreased over the same period. A strict negative correlation (R2 = 0.83) was highlighted between susceptibility of banana to crown rot and protection provided by yeast.  相似文献   

10.
The efficacy of eight fungal and ten endophytic bacterial isolates were tested for their ability to inhibit the growth of Pythium aphanidermatum, the causal agent of chilli damping-off. In vitro studies revealed that Trichoderma viride (TVA) and endophytic Pseudomonas fluorescens (EBL 20-PF) showed the highest inhibition of mycelial growth (71.5%; 76.7%) of P. aphanidermatum. Both the antagonists were compatible with each other and they were tested alone and together in vivo for the control of P. aphanidermatum. Besides, the induction of defense-related enzymes such as peroxidase (PO), polyphenoloxidase (PPO), phenylalanine ammonia-lyase (PAL), PR-protein like β-1, 3-glucanase and the accumulation of phenolics in chilli seedlings due to the application of bioagents were also studied. Combined application of talc-based formulation of bio-agents and challenge inoculated with P. aphanidermatum recorded maximum induction of defense-related enzymes, PR-proteins and accumulation of phenolics compared with individual application. This study suggest that the increased induction of defense-related enzymes (four to fivefold) and phenolic content (sixfold) due to the combination treatment of bioagents might have involved in the reduction of damping-off incidence and in turn increased the plant growth and yield of chilli.  相似文献   

11.
Plant growth-promoting rhizobacterial (PGPR) strains were isolated from different agro-ecosystems of Tamil Nadu, India, and were tested for their efficacy against the sheath rot pathogen Sarocladium oryzae under in vitro, glasshouse and field conditions. Vigour and a relative performance index (RPI) were used to assay the growth promotion and antagonistic activity of Pseudomonas strains against S. oryzae under in vitro conditions. The results revealed the significant performance by strains Pf1, TDK1 and PY15 compared to other strains. Further, the combination of Pseudomonas strains Pf1, TDK1 and PY15 was more effective in reducing sheath rot disease in rice plants compared to individual strains under glasshouse and field conditions. Quantitative and native polyacrylamide gel electrophoresis (PAGE) analysis of peroxidase (PO), polyphenol oxidase (PPO) and chitinase activity in rice plants showed an increased accumulation of defence enzymes in the treatment with a combination of Pf1, TDK1 and PY15 compared to the treatment with individual strains and untreated controls. The present study revealed the probable influence of antagonism, plant growth promotion and induced systemic resistance (ISR) by the mixture of Pseudomonas bioformulations in enhancing the disease resistance in rice plants against sheath rot disease.
Duraisamy SaravanakumarEmail:
  相似文献   

12.
The biocontrol potentials of Candida tropicalis YZ1, C. tropicalis YZ27 and Saccharomyces cerevisiae YZ7 against the postharvest anthracnose pathogen Colletotrichum musae were investigated. Treatments with all the three biocontrol agents (1 × 108 CFU/ml) significantly reduced the natural anthracnose disease severity of harvested banana fruits stored at ambient condition. Germination and survival of C. musae spores were markedly inhibited by all the three yeast strains in in vitro tests. The niche overlap index (NOI) was used to determine the interaction between the antagonists and C. musae, and the results (high NOI values) suggest competitive exclusion of C. musae by the yeast strains. C. tropicalis YZ27 inoculated on banana wounds exhibited rapid colonization and maintenance of its population on the inoculated site. The biocontrol efficacy was also observed as a function of concentration of the antagonist applied. The fruits treated with C. tropicalis YZ27, 36 h before pathogen inoculation, showed the best results with 96.0% disease inhibition followed by those treated 24 h before with 84.0% inhibition. The above results point to competition for nutrients and space as the main mechanism of antagonistic action of C. tropicalis YZ27 against C. musae.  相似文献   

13.
Rhizosphere and endophytic bacterial isolates from the roots and corms of banana were tested for their biocontrol efficiency against Banana bunchy top virus (BBTV). Molecular characterization using RAPD and microsatellite markers revealed genomic variability in the endophytic Pseudomonas and Bacillus isolates. Bio-formulations of mixtures of the rhizobacterial isolate Pseudomonas fluorescens (Pf1) and endophytic Bacillus spp. (EPB22) were effective in reducing the incidence of BBTV under green-house (80%) and field conditions (52%). Reduction in virus titer (0.64) was noticed in the plants treated with compatible mixtures of rhizobacterial and endophytic bacterial isolates as evidenced by ELISA, in comparison to control plants (1.69). In addition to disease control, a significant increase in the yield (53.33%) was noticed in the bacterized plants when compared to the control plants. Pathogenesis-related (PR) proteins, chitinase and β-1,3-glucanase and defense-related proteins, peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and phenolic compounds were significantly activated in the bacterized plants, thus inducing resistance against bunchy top virus. Populations of endophytic bacteria also remained high and stable throughout the growing period. Thus, application of mixtures of rhizosphere and endophytic bacteria increases yield and has a potential role in inducing resistance against Banana bunchy top virus.  相似文献   

14.
Previous research has shown that two local isolates of bacteria (Pantoea agglomerans and Flavobacterium sp.) are capable of biocontrol of the two main pathogens (Colletotrichum musae and Lasiodiplodia theobromae) known to cause crown rot on “Embul” (Musa, AAB) banana. In this investigation an attempt was made to elucidate the comparative virulence of these pathogens and to determine the underlying biocontrol mechanisms. L. theobromae was more virulent, causing faster spread of the disease, whereas C. musae was more resistant to the bacterial antagonists. Viable cells of the antagonists were more effective at suppressing conidial germination than cell-free culture media. It seemed that antifungal compounds acting on conidial germination may be heat stable and those acting on mycelia may include heat labile compounds also. Considering the specialized roles observed for each pathogen in terms of causing the disease, and in modes of control by antagonists, future field investigations on biocontrol should consider the roles played by the pathogens and the antagonists.
Anjani M. KarunaratneEmail:
  相似文献   

15.
Melanthiaceae (Liliales) comprise 17 genera of rhizomatous or bulbous perennials and are distributed across the Northern Hemisphere. The relationships among the five tribes in this family have been evaluated in many molecular and morphological studies. In this study, we performed a phylogenetic analysis of the 17 genera, including 106 species of Melanthiaceae sensu APG III and nine related species as outgroups, based on sequences of five plastid regions (atpB, rbcL, matK, ndhF and trnL‐F). Support values for the monophyly of the family (BSMP = 96%, BSML = 100%, PPBI = 1.00) and each tribe were improved in comparison with previous studies. Among the tribes, Melanthieae were sister to the remainder of the family and sister relationships between Xerophylleae and Parideae (BSMP = 96%, BSML = 100%, PPBI = 1.00) and Chionographideae and Heloniadeae (BSMP = 96%, BSML = 100%, PPBI = 1.00) were confirmed. Notably, the generic concept of Veratrum s.l. including Melanthium was not supported in the present study and these genera should be treated as distinct. In the case of Parideae, the relationship of Trillium govanianum to the other species remains uncertain and requires further studies. Finally, we mapped seven representative morphological characters onto the molecular phylogenetic tree for Melanthiaceae.  相似文献   

16.
Banana bunchy top disease caused by Banana bunchy top virus is the most serious viral disease of banana and plantain worldwide. The virus is transmitted by the aphid vector Pentalonia nigronervosa in a persistent manner. This paper deals with the effect of the interaction between plant growth promoting endophytic bacteria, Banana bunchy top virus, and the banana aphid Pentalonia nigronervosa in the expression of Pathogenesis-related proteins (PR-proteins) and defense enzymes in banana. The existence of virus in the aphids was confirmed by ELISA, DIBA and PCR. PCR could amplify 1100-bp replicase gene of BBTV from viruliferous aphids. A significant increase in the enzymatic activity of all measured PR proteins and defense enzymes, as compared to control plants, was seen in the plants inoculated with endophytic bacteria and challenged with viruliferous aphids. Native gel electrophoresis revealed expression of more isoforms of PR proteins viz., peroxidase and chitinase in the banana plants challenged with mixtures of plant growth promoting endophytic bacteria and viruliferous aphids. Enhanced activity of a PR-2 protein viz., β-1,3-glucanase was also noticed in the viruliferous aphids infested plants. Some of the defense-related enzymes viz., Polyphenol oxidase and Phenylalanine ammonia lyase and phenolic compounds were also upregulated, up to 5 days after aphid infestation and thereafter there was a reduction in the enzymatic activity. Thus, there exist a differential accumulation of PR proteins and defense-related enzymes, when there is tri-tropic interaction between endophytic bacteria, virus, and insect and the role of the endophytic bacteria in the defense mechanisms against insect pests needs to be elucidated.  相似文献   

17.
This study was undertaken to ascertain if the soft rot inciting Pectobacterium carotovorum/Erwinia carotovora would pass through the micropropagated bananas as a latent pathogen and cause disease during or post acclimatization. In vitro cultures of ‘Grand Naine’ were exposed to the pathogen by providing 100 μl of inoculum (0.001–1.0 at OD600 nm) at the lower leaf axil. These cultures showed a gradual development of soft rot symptoms coupled with obvious bacterial colony growth on banana proliferation medium and consequent plant mortality within a month irrespective of the inoculum level employed. Plants carried forward to acclimatization following inoculation in vitro failed to establish ex vitro. Monitoring the normal field-grown suckers at culture initiation through PCR screening employing soft rot Erwinia primers did not show the amplification of the 119-bp fragment as seen with the pure cultures of pathogen. Further testing of micropropagated banana plants through soil inoculation, in vitro culturing and PCR screening ruled out the possibility of the pathogen surviving in micropropagated stocks in latent form as the organism outgrew and killed the cultures. It emerged that the infection possibly takes place in the nursery. This information will be of particular value for the plant tissue culture industry, plant pathologists and quarantine agencies.  相似文献   

18.
The effect of Pseudomonas fluorescens treatment and Fusarium oxysporum f. sp. cubense inoculation on induction of phenylalanine ammonia-lyase (PAL), peroxidase (POX), chitinase, -1,3-glucanase and accumulation of phenolics in banana (Musa sp.) was studied. When banana roots were treated with P. fluorescens strain Pf10, a two-fold increase in phenolic content in leaf tissues was recorded 3 – 6 d after treatment. Challenge inoculation with F. oxysporum, the wilt pathogen, steeply increased the phenolic content in P. fluorescens-treated banana plants. Significant increase in POX activity was detected 6 – 9 d after P. fluorescens treatment. PAL, chitinase and -1,3-glucanase activities increased significantly from 3 d after P. fluorescens treatment and reached the maximum 6 d after treatment. Challenge inoculation with F. oxysporum further increased the enzyme activities. These results suggest that the enhanced activities of defense enzymes and elevated content of phenolics may contribute to bioprotection of banana plants against F. oxysporum.  相似文献   

19.
Biochemical analysis was carried out for 10 isolates of Pseudomonas fluorescens. All isolates were found positive for siderophore and indole acetic acid production (except Pf IX) and phosphate solubilisation (except Pf VII). Biochemically efficient strains (Pf I, Pf IV, Pf VII and Pf IX) were selected for management of root rot, collar rot and damping off caused by Phytophthora parasitica, Pythium sp. and Fusarium solani. The activity of defence-related enzymes like esterase, peroxidase and polyphenol oxidase was also detected by polyacrylamide gel electrophoresis (PAGE). Consistent appearance of esterase isozyme bands was visualised, in the range of 0.193–0.349. The highest Rm value 0.349 was observed on Pf IV. Whereas, for peroxidase, Rm value ranged between 0.302 and 0.373 and for polyphenol oxidase, it was in the range of 0.211–0.800. P. fluorescens Pf IV was found significantly effective to arrest the per cent mycelial growth of P. parasitica (55.20%), Pythium sp. (65.33%) and F. solani (64.67%). Among bioagents, seed treatment and soil drenching with Pf IV at 15 and 30 days after sowing were found effective to reduce per cent disease incidence (30.55%) at 120 days after emergence. Seed treatment with copper oxychloride at 3g/kg seed and metalaxyl at 2 g/kg seed were also found effective.  相似文献   

20.
Two plant growth-promoting rhizobacteria (PGPR), viz., Pseudomonas fluorescens strain Pf4 and P. aeruginosa strain Pag, protected chickpea (Cicer arietinum) plants from Sclerotium rolfsii infection when applied singly or in combination as seed treatment. Pag gave the best protection to the seedlings, applied either singly (mortality 16%) or in combination with Pf4 (mortality 17%) compared with 44% and 24% mortality in control and Pf4 treatment, respectively. The two PGPR strains induced the synthesis of specific phenolic acids, salicylic acid (SA), as well as total phenolics at different growth stages of chickpea seedlings with varied amount. The maximum amount of total phenolics was recorded in all the aerial parts of 4-week-old plants. Gallic, ferulic, chlorogenic, and cinnamic acids were the major phenolic acids detected in high-performance liquid chromatography (HPLC) analysis. Induction of such phenolic acids in the seedlings was observed up to 6 weeks in comparison with control. Salicylic acid (SA) was induced frequently during the first 3 weeks of growth only. Between the two strains, Pag was more effective in inducing phenolic acid synthesis applied either singly or in combination with strain Pf4 during the entire 6 weeks of growth of chickpea. In the presence of a culture filtrate of S. rolfsii, the two Pseudomonas strains induced more phenolic acids in treated than in non-treated and control plants. The occurrence of salicylic acid was frequent in the first 24 h, but infrequent at 48 and 96 h. Foliar spray of Pseudomonas strains also enhanced the phenolic acid content as well as total phenolics within 24 h of application. Gallic, chlorogenic, and cinnamic acids were consistently discerned in the treated leaves, whereas SA was absent even up to 96 h of application. Resistance in chickpea plants by Pseudomonas strains through induction of phenolic compounds as well as induced systemic resistance via SA-dependent pathway was evident. Received: 1 April 2002 / Accepted: 4 May 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号