首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 μm NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When grown in darkness, however, NPA disrupted the gravity response but did not affect elongation. The extent of inhibition of hypocotyl elongation by NPA increased in a fluence-rate-dependent manner to a maximum of about 75% inhibition at 50 μmol m−2 s−1 of white light. Plants grown under continuous blue or far-red light showed NPA-induced hypocotyl inhibition similar to that of white-light-grown plants. Plants grown under continuous red light showed less NPA-induced inhibition. Analysis of photoreceptor mutants indicates the involvement of phytochrome and cryptochrome in mediating this NPA response. Hypocotyls of some auxin-resistant mutants had decreased sensitivity to NPA in the light, but etiolated seedlings of these mutants were similar in length to the wild type. These results indicate that light has a significant effect on NPA-induced inhibition in Arabidopsis, and suggest that auxin has a more important role in elongation responses in light-grown than in dark-grown seedlings.  相似文献   

2.
Auxin is transported across the plasma membrane of plant cells by diffusion and by two carriers operating in opposite directions, the influx and efflux carriers. Both carriers most likely play an important role in controlling auxin concentration and distribution in plants but little is known regarding their regulation. We describe the influence of modifications of the transmembrane pH gradient and the effect of agents interfering with protein synthesis, protein traffic, and protein phosphorylation on the activity of the auxin carriers in suspension-cultured tobacco (Nicotiana tabacum L.) cells. Carrier-mediated influx and efflux were monitored independently by measuring the accumulation of [14C]2,4-dichlorophenoxyacetic acid and [3H]naphthylacetic acid, respectively. The activity of the influx carrier decreased on increasing external pH and on decreasing internal pH, whereas that of the efflux carrier was only impaired on internal acidification. The efflux carrier activity was inhibited by cycloheximide, brefeldin A, and the protein kinase inhibitors staurosporine and K252a, as shown by the increased capability of treated cells to accumulate [3H]naphthylacetic acid. Kinetics and reversibility of the effect of brefeldin A were consistent with one or several components of the efflux system being turned over at the plasma membrane with a half-time of less than 10 min. Inhibition of efflux by protein kinase inhibitors suggested that protein phosphorylation was essential to sustain the activity of the efflux carrier. On the contrary, the pharmacological agents used in this study failed to inhibit [14C]2,4-dichlorophenoxyacetic acid accumulation, suggesting that rapidly turned-over proteins or proteins activated by phosphorylation are not essential to carrier-mediated auxin influx. Our data support the idea that the efflux carrier in plants constitutes a complex system regulated at multiple levels, in marked contrast with the influx carrier. Physiological implications of the kinetic features of this regulation are discussed.  相似文献   

3.
Nitrate reduction was studied as a function of carbohydrate concentration in detached primary leaves of barley (Hordeum vulgare L. cv Numar) seedlings under aerobic conditions in light and darkness. Seedlings were grown either in continuous light for 8 days or under a regimen of 16-hour light and 8-hour dark for 8 to 15 days. Leaves of 8-day-old seedlings grown in continuous light accumulated 4 times more carbohydrates than leaves of plants grown under a light and dark regimen. When detached leaves from these seedlings were supplied with NO3 in darkness, those with the higher levels of carbohydrates reduced a greater proportion of the NO3 that was taken up. In darkness, added glucose increased the percentage of NO3 reduced up to 2.6-fold depending on the endogenous carbohydrate status of the leaves. Both NO3 reduction and carbohydrate content of the leaves increased with age. Fructose and sucrose also increased NO3 reduction in darkness to the same extent as glucose. Krebs cycle intermediates, citrate and succinate, did not increase NO3 reduction, whereas malate slightly stimulated it in darkness.

In light, 73 to 90% of the NO3 taken up was reduced by the detached leaves; therefore, an exogenous supply of glucose had little additional effect on NO3 reduction. The results indicate that in darkness the rate of NO3 reduction in primary leaves of barley depends upon the availability of carbohydrates.

  相似文献   

4.
The time course of and the influence of light intensity and light quality on the induction of a mitochondrial carbonic anhydrase (CA) in the unicellular green alga Chlamydomonas reinhardtii was characterized using western and northern blots. This CA was expressed only under low-CO2 conditions (ambient air). In asynchronously grown cells, the mRNA was detected 15 min after transfer from air containing 5% CO2 to ambient air, and the 21-kD polypeptide was detected on western blots after 1 h. When transferred back to air containing 5% CO2, the mRNA disappeared within 1 h and the polypeptide was degraded within 3 d. Photosynthesis was required for the induction in asynchronous cultures. The induction increased with light up to 500 μmol m−2 s−1, where saturation occurred. In cells grown synchronously, however, expression of the mitochondrial CA was also detected in darkness. Under such conditions the expression followed a circadian rhythm, with mRNA appearing in the dark 30 min before the light was turned on. Algae left in darkness continued this rhythm for several days.  相似文献   

5.
6.
Aslam M  Huffaker RC 《Plant physiology》1982,70(4):1009-1013
In vivo NO3 reduction in roots and shoots of intact barley (Hordeum vulgare L. var Numar) seedlings was estimated in light and darkness. Seedlings were placed in darkness for 24 hours to make them carbohydrate-deficient. During darkness, the leaves lost 75% of their soluble carbohydrates, whereas the roots lost only 15%. Detached leaves from these plants reduced only 7% of the NO3 absorbed in darkness. By contrast, detached roots from the seedlings reduced the same proportion of absorbed NO3, as did roots from normal light-grown plants. The rate of NO3 reduction in the roots accounted for that found in the intact dark-treated carbohydrate-deficient seedlings. The rates of NO3 reduction in roots of intact plants were the same for approximately 12 hours, both in light and darkness, after which the NO3 reduction rate in roots of plants placed in darkness slowly declined. In the dark, approximately 40% of the NO3 reduction occurred in the roots, whereas in light only 20% of the total NO3 reduction occurred in roots. A lesser proportion was reduced in roots because the leaves reduced more nitrate in light than in darkness.  相似文献   

7.
Cheng CK  Marsh HV 《Plant physiology》1968,43(11):1755-1759
The effects of gibberellic acid on lignification in seedlings of a dwarf and a tall cultivar of pea (Pisum sativum) grown under red or white light or in the darkness, were studied. Gibberellic acid (10−6-10−4 m) promoted stem elongation in both light and dark and increased the percentage of lignin in the stems of the light-grown dwarf pea. The gibberellin had no effect on the lignin content of the tall pea although high concentrations (10−4 m) promoted growth of the tall plants. Time course studies indicated that the enhanced lignification in the gibberellin-treated dwarf plants occurred only after a lag period of several days. It was concluded that gibberellic acid-enhanced ligmification had no direct relation to gibberellic acid-promoted growth. The activity of phenylalanine ammonia-lyase (E.C. 4.3.1.5) was higher in gibberellin-treated dwarf plants grown under white or red light than in untreated dwarf plants. Gibberellic acid had no detectable effect on the activity of this enzyme when the plants were grown in darkness, just as it had no effect on lignification under dark conditions. The data suggest that in gibberellin-deficient peas the activity of phenylalanine ammonia-lyase is one of the limiting factors in lignification.  相似文献   

8.
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.  相似文献   

9.
Effect of pH and Auxin on Chloride Uptake into Avena Coleoptile Cells   总被引:15,自引:15,他引:0       下载免费PDF全文
The effect of pH on 36Cl movement into coleoptile cells (Avena sativa L. cv. Garry) was investigated and compared with effects of indoleacetic acid. 36Cl uptake, but not efflux, is stimulated when coleoptile sections are placed in media adjusted to pH levels from 5 to 3 after a preincubation period at pH 6.5. The enhancement is seen within 2 minutes, is not correlated with growth, and is completely erased by respiratory inhibitors. In comparison to the acid-induced stimulation, the stimulatory effect of indoleacetic acid on 36Cl uptake is also not accompanied by accelerated efflux, and indoleacetic acid does not further stimulate 36Cl uptake into 1-millimeter sections beyond that seen at pH 3.5 without auxin.  相似文献   

10.
The effects of several photosynthetic inhibitors and uncouplers of oxidative phosphorylation on NO3 and NO2 assimilation were studied using detached barley (Hordeum vulgare L. cv Numar) leaves in which only endogenous NO3 or NO2 were available for reduction. Uncouplers of oxidative phosphorylation greatly increased NO3 reduction in both light and darkness, while photosynthetic inhibitors did not.

The NO2 concentration in the control leaves was very low in both light and darkness; 98% or more of the NO2 formed from NO3 was further assimilated in control leaves. More NO2 accumulated in the leaves in light and darkness in the presence of photosynthetic inhibitors. Of this NO2, 94% or more was further assimilated. It appears that metabolites, either external or internal to the chloroplast, capable of reducing NADP (which, in turn, could reduce ferredoxin via NADP reductase) might support NO2 reduction in darkness and light when photosynthetic electron flow is inhibited by photosynthetic inhibitors.

Nitrite assimilation was much more sensitive to uncouplers in darkness than in light: in darkness, 74% or more of NO2 formed from NO3 was further assimilated, whereas in light, 95% or more of the NO2 was further assimilated.

  相似文献   

11.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an ~500-μm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at ~10 μM O2. Flux calculations yielded a molar conversion ratio Stot/O2 of 2.03:1 (Stot = [H2S] + [HS] + [S2−]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 μM O2. The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 μM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

12.
The role of the apical shoot as a source of inhibitors preventing fruit growth in the absence of a stimulus (e.g. pollination or application of gibberellic acid) has been investigated in pea (Pisum sativum L.). Plant decapitation stimulated parthenocarpic growth, even in derooted plants, and this effect was counteracted by the application of indole acetic acid (IAA) or abscisic acid (ABA) in agar blocks to the severed stump. The treatment of unpollinated ovaries with gibberellic acid blocked the effect of IAA or ABA applied to the stump. [3H]IAA and [3H]ABA applied to the stump were transported basipetally, and [3H]ABA but not [3H]IAA was also detected in unpollinated ovaries. The concentration of ABA in unpollinated ovaries increased significantly in the absence of a promotive stimulus. The application of IAA to the stump enhanced by 2- to 5-fold the concentration of ABA in the inhibited ovary, whereas the inhibition of IAA transport from the apical shoot by triiodobenzoic acid decreased the ovary content of ABA (to approximately one-half). Triiodobenzoic acid alone, however, was unable to stimulate ovary growth. Thus, in addition to removing IAA transport from the apical shoot, the accumulation of a promotive factor is also necessary to induce parthenocarpic growth in decapitated plants.  相似文献   

13.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

14.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

15.
Iron deficiency in dwarf bean (Phaseolus vulgaris L.) induces an increased activity of a system in the rhizodermal cells, which reduces extracellular ferric salts, and an active proton efflux from the roots, which is coupled to accumulation of citrate and malate in the roots and subsequent export of these compounds in the xylem. During reduction of extracellular ferricyanide by Fe-deficient plants, the stoichiometry of electron transport to proton efflux is 2e/1H+, and citrate and malate levels in the roots are strongly decreased. Reduction of ferricyanide by Fe-sufficient plants has no influence on root and shoot levels of citrate and malate, but in such plants the process is characterized by a e/H+ efflux stoichiometry close to unity. Apparently, organic acid metabolism and transport are closely associated with the e/H+ efflux ratio. To assess the significance of organic acid metabolism as one of the direct intracellular components of the induced unbalanced e/H+ efflux by roots, we studied NO3 reduction in shoots and roots of Fe-deficient and Fe-sufficient plants. Nitrate reductase activity in the roots was positively correlated with the level of citrate and malate, whereas the enzyme activity in the leaves responded positively to the import of these organic acid anions.  相似文献   

16.

Background and Aims

Although ammonium (NH4+) is the preferred form of nitrogen over nitrate (NO3) for rice (Oryza sativa), lateral root (LR) growth in roots is enhanced by partial NO3 nutrition (PNN). The roles of auxin distribution and polar transport in LR formation in response to localized NO3 availability are not known.

Methods

Time-course studies in a split-root experimental system were used to investigate LR development patterns, auxin distribution, polar auxin transport and expression of auxin transporter genes in LR zones in response to localized PNN in ‘Nanguang’ and ‘Elio’ rice cultivars, which show high and low responsiveness to NO3, respectively. Patterns of auxin distribution and the effects of polar auxin transport inhibitors were also examined in DR5::GUS transgenic plants.

Key Results

Initiation of LRs was enhanced by PNN after 7 d cultivation in ‘Nanguang’ but not in ‘Elio’. Auxin concentration in the roots of ‘Nanguang’ increased by approx. 24 % after 5 d cultivation with PNN compared with NH4+ as the sole nitrogen source, but no difference was observed in ‘Elio’. More auxin flux into the LR zone in ‘Nanguang’ roots was observed in response to NO3 compared with NH4+ treatment. A greater number of auxin influx and efflux transporter genes showed increased expression in the LR zone in response to PNN in ‘Nanguang’ than in ‘Elio’.

Conclusions

The results indicate that higher NO3 responsiveness is associated with greater auxin accumulation in the LR zone and is strongly related to a higher rate of LR initiation in the cultivar ‘Nanguang’.  相似文献   

17.
Oxidative Damage in Pea Plants Exposed to Water Deficit or Paraquat   总被引:24,自引:0,他引:24       下载免费PDF全文
Enhanced Cl efflux during acidosis in plants is thought to play a role in cytosolic pH (pHc) homeostasis by short-circuiting the current produced by the electrogenic H+ pump, thereby facilitating enhanced H+ efflux from the cytosol. Using an intracellular perfusion technique, which enables experimental control of medium composition at the cytosolic surface of the plasma membrane of charophyte algae (Chara corallina), we show that lowered pHc activates Cl efflux via two mechanisms. The first is a direct effect of pHc on Cl efflux; the second mechanism comprises a pHc-induced increase in affinity for cytosolic free Ca2+ ([Ca2+]c), which also activates Cl efflux. Cl efflux was controlled by phosphorylation/dephosphorylation events, which override the responses to both pHc and [Ca2+]c. Whereas phosphorylation (perfusion with the catalytic subunit of protein kinase A in the presence of ATP) resulted in a complete inhibition of Cl efflux, dephosphorylation (perfusion with alkaline phosphatase) arrested Cl efflux at 60% of the maximal level in a manner that was both pHc and [Ca2+]c independent. These findings imply that plasma membrane anion channels play a central role in pHc regulation in plants, in addition to their established roles in turgor/volume regulation and signal transduction.  相似文献   

18.
Transport of Sterols to the Plasma Membrane of Leek Seedlings   总被引:4,自引:1,他引:3       下载免费PDF全文
To investigate the intracellular transport of sterols in etiolated leek (Allium porrum L.) seedlings, in vivo pulse-chase experiments with [1-14C]acetate were performed. Then, endoplasmic reticulum-, Golgi-, and plasma membrane (PM)-enriched fractions were prepared and analyzed for the radioactivity incorporated into free sterols. In leek seedlings sterols are present as a mixture in which (24R)-24-ethylcholest-5-en-3β-ol is by far the major compound (around 60%). The other sterols are represented by cholest-5-en-3β-ol, 24-methyl-cholest-5-en-3β-ol, (24S)-24-ethylcholesta-5,22E-dien-3β-ol, and stigmasta-5,24(241)Z-dien-3β-ol. These compounds are shown to reside mainly in the PM. Our results clearly indicate that free sterols are actively transported from the endoplasmic reticulum to the PM during the first 60 min of chase, with kinetics very similar to that of phosphatidylserine. Such a transport was found to be decreased at low temperature (12°C) and following treatment with monensin and brefeldin A. These data are consistent with a membrane-mediated process for the intracellular transport of sterols to the PM, which likely involves the Golgi apparatus.  相似文献   

19.
It was previously shown that a number of sulfhydryl [SH] group reagents (N-ethylmaleimide [NEM], iodoacetate, Ag+, HgCl2, etc.) can induce a marked, transitory stimulation of O2 uptake (QO2) in Egeria densa leaves, insensitive to CN and salicylhydroxamic acid and inhibited by diphenylene iodonium and quinacrine. The phytotoxin fusicoccin (FC) also induces a marked increase in O2 consumption in E. densa leaves, apparently independent of the recognized stimulating action on the H+-ATPase. In this investigation we compared the FC-induced increase in O2 consumption with those induced by NEM and Ag+, and we tested for a possible interaction between FC and the two SH blockers in the activation of QO2. The results show (a) the different nature of the FC- and NEM- or Ag+-induced increases of QO2; (b) that FC counteracts the NEM- (and Ag+)-induced respiratory burst; and (c) that FC strongly reduces the damaging effects on plasma membrane permeability observed in E. densa leaves treated with the two SH reagents. Two alternative models of interpretation of the action of FC, in activating a CN-sensitive respiratory pathway and in suppressing the SH blocker-induced respiratory burst, are proposed.  相似文献   

20.
The relationship between the production of reactive oxygen species and the hypersensitive response (HR) of tobacco (Nicotiana tabacum L.) toward an incompatible race of the Oomycete Phytophthora parasitica var nicotianae has been investigated. A new assay for superoxide radical (O2) production based on reduction of the tetrazolium dye sodium,3′-(1-[phenylamino-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT) has enabled the quantitative estimation of perhydroxyl/superoxide radical acid-base pair (HO2·/O2) production during the resistant response. Tobacco suspension cells were inoculated with zoospores from compatible or incompatible races of the pathogen. Subsequent HO2·/O2 production was monitored by following the formation of XTT formazan. In the incompatible interaction only, HO2·/O2 was produced in a minor burst between 0 and 2 h and then in a major burst between 8 and 10 h postinoculation. During this second burst, rates of XTT reduction equivalent to a radical flux of 9.9 × 10−15 mol min−1 cell−1 were observed. The HO2·/O2 scavengers O2 dismutase and Mn(III)desferal each inhibited dye reduction. An HR was observed in challenged, resistant cells immediately following the second burst of radical production. Both scavengers inhibited the HR when added prior to the occurrence of either radical burst, indicating that O2 production is a necessary precursor to the HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号