首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelin-1 (ET) is known to stimulate mesangial cell (MC) proliferation, extracellular matrix (ECM) synthesis, and thereby contribute to the progression of glomerulonephritis (GN). To clarify the molecular and cellular mechanisms of how ET is involved in the development of glomerular sclerosis, we investigated the influence of ET on the MC-alpha1beta1 integrin-mediated collagen matrix reorganization using a collagen gel contraction assay. ET enhanced MC-alpha1beta1 integrin-mediated gel contraction in a dose-dependent manner. Addition of the endothelin A (ETA) receptor antagonist, BQ123, into collagen gels abolished ET-induced gel contraction by MC. Cell behavior involved in ET-induced gel contraction was investigated in combination with function-blocking anti-alpha1-integrin antibody. Migration and adhesion assays revealed that ET stimulated alpha1beta1 integrin-mediated MC migration but did not influence cell adhesion to type I collagen (collagen I). Integrin-function blocking studies using anti-alpha1 integrin antibody indicated that MC-alpha1beta1 integrin is required not only for collagen-dependent migration, but also for gel contraction. Zymography showed that ET increased MC matrix metalloproteinase-2 (MMP-2) activity in a dose-dependent manner during MC-induced gel contraction process. Finally, flow cytometry analysis indicated that ET did not affect the cell surface expression of the MC-alpha1beta1 integrin within the collagen gel. These data suggested that ET promotes collagen matrix reorganization through the enhancement of MC-alpha1beta1 integrin-dependent migration and MMP-2 activity. We therefore conclude that ET is a potential molecule inducing pathological collagen matrix remodeling observed in progressive GN.  相似文献   

2.
Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the pathogenesis of progressive glomerulonephritis (GN). Previous studies have reported that PDGF-BB stimulates mesangial cells (MCs)-induced collagen matrix remodeling through enhancement of alpha1beta1 integrin-dependent migratory activity. To determine the cell signaling pathway responsible for abnormal MC-related mesangial matrix remodeling in progressive GN, we studied the involvement of the extracellular signal-regulated kinase (ERK)/activator protein-1 (AP-1) pathway in PDGF-BB-enhanced collagen gel contraction. Western blotting and gel shift assay revealed that MC-induced gel contraction resulted in ERK activation in parallel with that of AP-1 binding, peaking at 4 h and lasting at least for 24 h. Application of the MEK inhibitor, U0126, and the c-jun/AP-1 inhibitor, curcumin, inhibited gel contraction and AP-1 activity, respectively, dose dependently. PDGF-BB enhanced not only gel contraction but ERK phosphorylation and AP-1 activity by MCs. Marked inhibitory effects on PDGF-BB-induced gel contraction and ERK/AP-1 activity were observed in the presence of either function blocking anti-alpha1- or anti-beta1-integrin antibody or U0126. Consistently, AP-1-inactive MCs expressing a dominant-negative mutant of c-jun showed a significant decrease of PDGF-BB-induced gel contraction as compared with mock-transfected MCs. Finally, migration assay showed that ERK/AP-1 activity is required for PDGF-BB-stimulated alpha1beta1 integrin-dependent MC migration to collagen I. These results indicated that PDGF-BB enhances alpha1beta1 integrin-mediated collagen matrix reorganization through the activation of the ERK/AP-1 pathway that is crucial for MC migration. We conclude that the ERK/AP-1 pathway plays an important role in PDGF-BB-induced alpha1beta1 integrin-dependent collagen matrix remodeling; therefore, the inhibition of its pathway may provide a novel approach to regulate abnormal collagen matrix remodeling in progressive GN.  相似文献   

3.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that alpha 1 beta 1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of alpha 1 beta 1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-alpha1 or anti-beta1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked alpha 1 beta 1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of alpha 1 beta 1 integrin. These results suggested that ERK1/2 activation is critical for the alpha 1 beta 1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

4.
Mesangial matrix expansion is an early lesion leading to glomeruloclerosis and chronic renal diseases. A beneficial effect is achieved with angiotensin I-converting enzyme inhibitors (ACEI), which also favor bradykinin (BK) B2 receptor (B2R) activation. To define the underlying mechanism, we hypothesized that B2R activation could be a negative regulator of collagen synthesis in mesangial cells (MC). We investigated the effect of BK on collagen synthesis and signaling in MC. Inflammation was evaluated by intercellular adhesion molecule-1 (ICAM-1) expression. BK inhibited collagen I and IV synthesis stimulated by high glucose, epithelial growth factor (EGF), and transforming growth factor-β (TGF-β) but did not alter ICAM-1. Inhibition of collagen synthesis was B2R but not B1R mediated. PKC or phosphatidylinositol 3-kinase (PI3K) inhibitors mimicked the BK effect. B2R activation inhibited TGF-β- and EGF-induced Erk1/2, Smad2/3, Akt S473, and EGFR phosphorylation. A phosphatase inhibitor prevented BK effects. The in vivo impact of B2R on mesangial matrix expansion was assessed in streptozotocin-diabetic rodents. Deletion of B2R increased mesangial matrix expansion and albuminuria in diabetic mice. In diabetic rats, matrix expansion and albuminuria were prevented by ACEI but not by ACEI and B2R antagonist cotreatment. Consistently, the lowered BK content of diabetic glomeruli was restored by ACEI. In conclusion, deficient B2R activation aggravated mesangial matrix expansion in diabetic rodents whereas B2R activation reduced MC collagen synthesis by a mechanism targeting Erk1/2 and Akt, common pathways activated by EGF and TGF-β. Taken together, the data support the hypothesis of an antifibrosing effect of B2R activation.  相似文献   

5.
6.
Abnormal mesangial extracellular matrix remodeling by mesangial cells (MCs) is the hallmark of progressive glomerulonephritis (GN). We recently showed, using a type I collagen gel contraction assay, that α1β1 integrin-dependent MC adhesion and migration are necessary cell behaviors for collagen matrix remodeling. To further determine the mechanism of α1β1 integrin-mediated collagen remodeling, we studied the signaling pathways of MCs that participate in the regulation of collagen gel contraction. Immunoprecipitation and phosphotyrosine detection revealed that gel contraction is associated with the enhanced activity and phosphorylation of ERK1/2 by MCs. The tyrosine kinase inhibitors herbimycin and genistein inhibited collagen gel contraction dose dependently. Furthermore, targeting ERK1/2 activity with a MEK inhibitor, PD98059, and antisense ERK1/2 hindered gel contraction in a dose-dependent manner. Similar inhibitory effects on gel contraction and ERK1/2 phosphorylation were observed when MC-mediated gel contraction was performed in the presence of function-blocking anti-α1 or anti-β1 integrin antibodies. However, cell adhesion and migration assays indicated that PD98059 and antisense ERK1/2 blocked α1β1 integrin-dependent MC migration, but did not interfere with collagen adhesion, although there was a marked decrease in ERK1/2 phosphorylation and ERK1/2 protein expression in cell adhesion on type I collagen. None of the above could affect membrane expression of α1β1 integrin. These results suggested that ERK1/2 activation is critical for the α1β1 integrin-dependent MC migration necessary for collagen matrix reorganization. We therefore conclude that ERK1/2 may serve as a possible target for pharmacological inhibition of pathological collagen matrix formation in GN.  相似文献   

7.
The metalloproteinase ADAM15 is a multi‐domain disintegrin protease that is upregulated in a variety of human cancers. ADAM15 mRNA and protein levels are increased in prostate cancer and its expression is significantly increased during metastatic progression. It is likely that ADAM15 supports disease progression differentially through the action of its various functional domains. ADAM15 may downregulate adhesion of tumor cells to the extracellular matrix, reduce cell–cell adhesion, and promote metastasis through the activity of its disintegrin and metalloproteinase domains. Additionally, ADAM15 can influence cell signaling by shedding membrane‐bound growth factors and other proteins that interact with receptor tyrosine kinases, leading to receptor activation. There is also evidence supporting a role for ADAM15 in angiogenesis and angioinvasion of tumor cells, which are critical for unrestrained tumor growth and metastatic spread. Given its diverse functions, ADAM15 may represent a pivotal regulatory component of tumor progression, an important target for therapeutic intervention, or emerge as a biomarker of disease progression. J. Cell. Biochem. 106: 967–974, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Snake venom metalloproteinases (SVMPs) are members of the Reprolysin family of metalloproteinases to which the ADAM (a disintegrin and metalloproteinase) proteins also belong. The disintegrin-like/cysteine-rich domains of the ADAMs have been implicated in their function. In the case of the SVMPs, we hypothesized that these domains could function to target the metalloproteinases to key extracellular matrix proteins or cell surface proteins. Initially we detected interaction of collagen XIV, a fibril-associated collagen with interrupted triple helices containing von Willebrand factor A (VWA) domains, with the PIII SVMP catrocollastatin. Next we investigated whether other VWA domain-containing matrix proteins could support the binding of PIII SVMPs. Using surface plasmon resonance, the PIII SVMP jararhagin and a recombinant cysteine-rich domain from a PIII SVMP were demonstrated to bind to collagen XIV, collagen XII, and matrilins 1, 3, and 4. Jararhagin was shown to cleave these proteins predominantly at sites localized at or near the VWA domains suggesting that it is the VWA domains to which the PIII SVMPs are binding via their cysteine-rich domain. In light of the fact that these extracellular matrix proteins function to stabilize matrix, targeting the SVMPs to these proteins followed by their specific cleavage could promote the destabilization of extracellular matrix and cell-matrix interactions and in the case of capillaries could contribute to their disruption and hemorrhage. Although there is only limited structural homology shared by the cysteine-rich domains of the PIII SVMPs and the ADAMs our results suggest an analogous function for the cysteine-rich domains in certain members of the expanded ADAM family of proteins to target them to VWA domain-containing proteins.  相似文献   

9.
An aberrant proliferation of mesangial cells (MCs) is one of the more important features of diabetic nephropathy (DN). Adiponectin, an adipocyte-derived hormone, has been associated with type 2 diabetes, a known cause of DN. Recent studies have suggested that adiponectin has a protective effect on the kidney. To elucidate the potential protective mechanism of adiponectin on kidney, we investigated the effects of adiponectin on platelet-derived growth factor (PDGF)-induced cell proliferation and intracellular signaling pathways in cultured Human MCs (HMCs). PDGF-induced HMC proliferation was significantly inhibited by the co-treatment of adiponectin. Adiponectin alone had no effect on HMC proliferation. The mammalian target of rapamycin (mTOR) and 40?S ribosomal S6 kinase 1 (S6K1) were activated by PDGF stimulation in HMCs. PDGF-induced mTOR and S6K1 phosphorylations were significantly attenuated by the co-treatment of adiponectin in HMC. Adiponectin alone had no effects on PDGF-receptor autophosphorylation by PDGF. We also confirmed that the inhibitory effect of adiponectin on PDGF-induced HMC proliferation was significantly suppressed by compound C, an adenosine 5'-monophosphate-activated protein kinase (AMPK) inhibitor. From these findings, it is implied that adiponectin could attenuate renal dysfunction associated with MC disorders through AMPK-mTOR signal pathway.  相似文献   

10.
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (alpha4beta1, alpha5beta1, or both), and cell migration on full-length fibronectin or on its alpha4beta1 or alpha5beta1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the alpha4beta1 but not the alpha5beta1 integrin. ADAM17 had the reciprocal effect; it inhibited alpha5beta1- but not alpha4beta1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both alpha4beta1 and alpha5beta1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the alpha4beta1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains.  相似文献   

11.
ADAM (a disintegrin and metalloproteinase) 10 is a key member of the ADAM family of disintegrin and metalloproteinases which process membrane-associated proteins to soluble forms in a process known as 'shedding'. Among the major targets of ADAM10 are Notch, EphrinA2 and CD44. In many cell-based studies of shedding, the activity of ADAM10 appears to overlap with that of ADAM17, which has a similar active-site topology relative to the other proteolytically active ADAMs. The tissue inhibitors of metalloproteinases, TIMPs, have proved useful in the study of ADAM function, since TIMP-1 inhibits ADAM10, but not ADAM17; however, both enzymes are inhibited by TIMP-3. In the present study, we show that, in comparison with ADAM17 and the MMPs (matrix metalloproteinases), the N-terminal domains of TIMPs alone are insufficient for the inhibition of ADAM10. This knowledge could form the basis for the design of directed inhibitors against different metalloproteinases.  相似文献   

12.
13.
The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.  相似文献   

14.
ADAM33 (a disintegrin and metalloproteinase) is an asthma susceptibility gene recently identified through a genetic study of asthmatic families (van Eerdewegh et al. (2002) Nature 418, 426-430). In order to characterize the catalytic properties of ADAM33, the metalloproteinase domain of human ADAM33 was expressed in Drosophila S2 cells and purified. The N-terminal sequence of the purified metalloproteinase was exclusively (204)EARR, indicating utilization of one of three furin recognition sites. Of many synthetic peptides tested as potential substrates, four peptides derived from beta-amyloid precursor protein (APP), Kit-ligand-1 (KL-1), tumor necrosis factor-related activation-induced cytokine, and insulin B chain were cleaved by ADAM33; mutation at the catalytic site, E346A, inactivated catalytic activity. Cleavage of APP occurred at His(14)/Gln(15), not at the alpha-secretase site and was inefficient (k(cat)/K(m) (1.6 +/- 0.3) x 10(2) m(-1) s(-1)). Cleavage of a juxtamembrane KL-1 peptide occurred at a site used physiologically with a similar efficiency. Mutagenesis of KL-1 peptide substrate indicated that the P3, P2, P1, and P3' residues were critical for activity. In a transfected cell-based sheddase assay, ADAM33 functioned as a negative regulator of APP shedding and mediated some constitutive shedding of KL-1, which was not regulated by phorbol 12-myristate 13-acetate activation. ADAM33 activity was sensitive to several hydroxamate inhibitors (IK682, K(i) = 23 +/- 7 nm) and to tissue inhibitors of metalloproteinase (TIMPs). Activity was inhibited moderately by TIMP-3 and TIMP-4 and weakly inhibited by TIMP-2 but not by TIMP-1, a profile distinct from other ADAMs. The identification of ADAM33 peptide substrates, cellular activity, and a distinct inhibitor profile provide the basis for further functional studies of ADAM33.  相似文献   

15.
Glomerulosclerosis is a common disorder in many types of chronic kidney diseases. Previous studies have shown that glomerular mesangial cells (MCs) play an important role in the pathogenesis of glomerulosclerosis. The ability of saikosaponin-d (SSd) to reduce the damage of kidney in progressive glomerulosclerosis has been demonstrated. In this study, the effects of saikosaponin-d on MC proliferation and synthesis of extracellular matrix proteins were investigated. Rat MCs were isolated from Wistar rats and cultured in Dulbecco's modified Eagle's medium. MCs were challenged with lipopolysacchorides and incubated with different concentrations of SSd. Cell proliferation and cytotoxicity were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and lactate dehydrogenase assays. Type IV collagen, fibronectin, and TGF-beta1 in the conditioned medium were measured. The expression of cyclin-dependent kinase 4, c-Jun, and c-Fos was determined by immunohistochemistry. At a concentration of 4 microg/mL or lower, SSd inhibited MC proliferation but did not cause cell death. SSd also inhibited lipopolysaccharide-induced secretion of type IV collagen, fibronectin, and TGF-beta1 in MCs. Additionally, SSd reduced the expression of CDK4, c-Jun, and c-Fos in MCs. We conclude that SSd inhibited MC proliferation and synthesis of extracullular matrix proteins through the downregulation of the CDK4, c-Jun, and c-Fos genes.  相似文献   

16.
The study was undertaken to examine the effects of C-peptide on glomerular volume (V(GLOM)), mesangial matrix synthesis, and degradation in streptozotocin (STZ)-diabetic rats with poor or moderate glycemic control. Series 1 (poor glycemic control) included groups of healthy rats, hyperglycemic rats, diabetic insulin-treated rats and diabetic C-peptide-treated rats. Series 2 (moderate glycemic control) included groups of healthy rats, diabetic insulin-treated rats, diabetic insulin- and C-peptide-treated rats. After 8 weeks, the left kidney was excised for evaluation of V(GLOM) and mesangial matrix area via light microscopy. Mesangial cells were cultured for 48 h and type IV collagen expression and matrix metalloproteinase (MMP)-2 expression were measured by ELISA and RT-PCR. The results indicated that in Series 1, C-peptide administration suppressed the diabetes-induced increase in the V(GLOM) and the mesangial matrix area. In Series 2, C-peptide administration resulted in a similar decrease in the V(GLOM) and a greater decrease in the mesangial matrix area when compared with insulin therapy alone. Moreover, C-peptide (300 nM) completely inhibited the glucose-induced increase of the collagen IV mRNA expression and protein concentration in mesangial cells cultured in 30 mM glucose medium. MMP-2 mRNA expression was not influenced by C-peptide. In conclusion, C-peptide administration to STZ-diabetic rats for 8 weeks results in the inhibition of diabetes-induced expansion of the mesangial matrix. This effect is independent of the level of glycemic control and results from the inhibition of diabetes-induced excessive formation of mesangial type IV collagen.  相似文献   

17.
18.
A disintegrin and metalloproteinase15 (ADAM15) has been shown to be upregulated and mediate endothelial hyperpermeability during inflammation and sepsis. This molecule contains multiple functional domains with the ability to modulate diverse cellular processes including cell adhesion, extracellular matrix degradation, and ectodomain shedding of transmembrane proteins. These characteristics make ADAM15 an attractive therapeutic target in various diseases. The lack of pharmacological inhibitors specific to ADAM15 prompted our efforts to identify biological or molecular tools to alter its expression for further studying its function and therapeutic implications. The goal of this study was to determine if ADAM15-targeting microRNAs altered ADAM15-induced endothelial barrier dysfunction during septic challenge by bacterial lipopolysaccharide (LPS). An in silico analysis followed by luciferase reporter assay in human vascular endothelial cells identified miR-147b with the ability to target the 3′ UTR of ADAM15. Transfection with a miR-147b mimic led to decreased total, as well as cell surface expression of ADAM15 in endothelial cells, while miR-147b antagomir produced an opposite effect. Functionally, LPS-induced endothelial barrier dysfunction, evidenced by a reduction in transendothelial electric resistance and increase in albumin flux across endothelial monolayers, was attenuated in cells treated with miR-147b mimics. In contrast, miR-147b antagomir exerted a permeability-increasing effect in vascular endothelial cells similar to that caused by LPS. Taken together, these data suggest the potential role of miR147b in regulating endothelial barrier function by targeting ADAM15 expression.  相似文献   

19.
Production of extracellular matrix proteins, such as type IV collagen and fibronectin, by mesangial cells contributes to progressive glomerulosclerosis. In this study, the ability of vasopressin (AVP), which causes mesangial cell proliferation and hypertrophy, to stimulate type IV collagen production by cultured human mesangial cells was examined using an enzyme-linked immunosorbent assay. AVP induced a concentration-dependent increase in the production of type IV collagen and this effect was potently and concentration-dependently inhibited by AVP V1A receptor antagonists, including YM218. AVP also induced a concentration-dependent increase in transforming growth factor (TGF)-β secretion by human mesangial cells and this effect was inhibited by V1A receptor antagonists. Furthermore, TGF-β also induced an increase in the production of type IV collagen; the AVP-enhanced production of type IV collagen was inhibited by an anti-TGF-β antibody. These findings indicate that AVP stimulates synthesis of type IV collagen by cultured human mesangial cells through the induction of TGF-β synthesis mediated by V1A receptors; consequently, AVP contributes to glomerular remodeling and extracellular matrix accumulation observed in glomerular diseases.  相似文献   

20.
Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell-ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell-collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号