首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

2.
3.
The seven conserved enzymatic domains required for tryptophan (Trp) biosynthesis are encoded in seven genetic regions that are organized differently (whole-pathway operons, multiple partial-pathway operons, and dispersed genes) in prokaryotes. A comparative bioinformatics evaluation of the conservation and organization of the genes of Trp biosynthesis in prokaryotic operons should serve as an excellent model for assessing the feasibility of predicting the evolutionary histories of genes and operons associated with other biochemical pathways. These comparisons should provide a better understanding of possible explanations for differences in operon organization in different organisms at a genomics level. These analyses may also permit identification of some of the prevailing forces that dictated specific gene rearrangements during the course of evolution. Operons concerned with Trp biosynthesis in prokaryotes have been in a dynamic state of flux. Analysis of closely related organisms among the Bacteria at various phylogenetic nodes reveals many examples of operon scission, gene dispersal, gene fusion, gene scrambling, and gene loss from which the direction of evolutionary events can be deduced. Two milestone evolutionary events have been mapped to the 16S rRNA tree of Bacteria, one splitting the operon in two, and the other rejoining it by gene fusion. The Archaea, though less resolved due to a lesser genome representation, appear to exhibit more gene scrambling than the Bacteria. The trp operon appears to have been an ancient innovation; it was already present in the common ancestor of Bacteria and Archaea. Although the operon has been subjected, even in recent times, to dynamic changes in gene rearrangement, the ancestral gene order can be deduced with confidence. The evolutionary history of the genes of the pathway is discernible in rough outline as a vertical line of descent, with events of lateral gene transfer or paralogy enriching the analysis as interesting features that can be distinguished. As additional genomes are thoroughly analyzed, an increasingly refined resolution of the sequential evolutionary steps is clearly possible. These comparisons suggest that present-day trp operons that possess finely tuned regulatory features are under strong positive selection and are able to resist the disruptive evolutionary events that may be experienced by simpler, poorly regulated operons.  相似文献   

4.
Molecular evolution of the histidine biosynthetic pathway   总被引:1,自引:1,他引:0  
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of the Bacteria, Archaea, and Eucarya. Paralogous duplications, gene elongation, and fusion events involving different his genes have played a major role in shaping this biosynthetic route. Evidence that the hisA and the hisF genes and their homologues are the result of two successive duplication events that apparently took place before the separation of the three cellular lineages is extended. These two successive gene duplication events as well as the homology between the hisH genes and the sequences encoding the TrpG-type amidotransferases support the idea that during the early stages of metabolic evolution at least parts of the histidine biosynthetic pathway were mediated by enzymes of broader substrate specificities. Maximum likelihood trees calculated for the available sequences of genes encoding these enzymes have been obtained. Their topologies support the possibility of an evolutionary proximity of archaebacteria with low GC Gram-positive bacteria. This observation is consistent with those detected by other workers using the sequences of heat-shock proteins (HSP70), glutamine synthetases, glutamate dehydrogenases, and carbamoylphosphate synthetases.Abbreviations as amino acid - ORF open reading frame - bp base pair - kb 103 bp - CarA carbamoyl phosphate synthetase (EC 6.3.5.5) - GAT glutamine amidotransferase - GuaA GMP synthetase (EC 6.3.4.1) - PabA 4-amino-4-deoxychorismate synthase (EC 4.1.3-) - PyrG GTP synthetase (EC 6.3.4.2) - AICAR 5-aminoimidazole-4-carboxamide-l--d ribofuranosyl 5-monophosphate - HAL l-histidinal - HOL l-histidinol - HP histidinol phosphate - IAP imidazole acetol-phosphate - IGP imidazole glycerol phosphate - PR phosphoribosyl - PRFAR N-[(5-phosphoribulosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide - 5-ProFAR N 1-[(5-phosphoribosyl) formimino]-5-aminoimidazole-4-carboxamide ribonucleotide - PRPP phosphoribosyl-pyrophosphate - RFLP restriction fragment length polymorphism Correspondence to: R. Fani  相似文献   

5.
The structure and organization of 470 histidine biosynthetic genes from 47 different proteobacteria were combined with phylogenetic inference to investigate the mechanisms responsible for assembly of the his pathway and the origin of his operons. Data obtained in this work showed that a wide variety of different organization strategies of his gene arrays exist and that some his genes or entire his operons are likely to have been horizontally transferred between bacteria of the same or different proteobacterial branches. We propose a piecewise model for the origin and evolution of proteobacterial his operons, according to which the initially scattered his genes of the ancestor of proteobacteria coded for monofunctional enzymes (except possibly for hisD) and underwent a stepwise compacting process that reached its culmination in some -proteobacteria. The initial step of operon buildup was the formation of the his core, a cluster consisting of four genes (hisBHAF) whose products interconnect histidine biosynthesis to both de novo synthesis of purine metabolism and that occurred in the common ancestor of the // branches, possibly after its separation from the one. The following step was the formation of three mini-operons (hisGDC, hisBHAF, hisIE) transcribed from independent promoters, that very likely occurred in the ancestor of the /-branch, after its separation from the one. Then the three mini-operons joined together to give a compact operon. In most -proteobacteria the two fusions involving the gene pairs hisNB and hisIE occurred. Finally the -proteobacterial his operon was horizontally transferred to other proteobacteria, such as Campylobacter jejuni. The biological significance of clustering of his genes is also discussed.[Reviewing Editor: Dr. Martin Kreitman]  相似文献   

6.
7.
8.
9.
10.
The hisA and hisF genes belong to the histidine operon that has been extensively studied in the enterobacteria Escherichia coli and Salmonella typhimurium where the hisA gene codes for the phosphoribosyl-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase (EC 5.3.1.16) catalyzing the fourth step of the histidine biosynthetic pathway, and the hisF gene codes for a cyclase catalyzing the sixth reaction. Comparative analysis of nucleotide and predicted amino acid sequence of hisA and hisF genes in different microorganisms showed extensive sequence homology (43% considering similar amino acids), suggesting that the two genes arose from an ancestral gene by duplication and subsequent evolutionary divergence. A more detailed analysis, including mutual information, revealed an internal duplication both in hisA and hisF genes in each of the considered microorganisms. We propose that the hisA and hisF have originated from the duplication of a smaller ancestral gene corresponding to half the size of the actual genes followed by rapid evolutionary divergence. The involvement of gene elongation, gene duplication, and gene fusion in the evolution of the histidine biosynthetic genes is also discussed. Correspondence to: M. Bazzicalupo  相似文献   

11.
Evolution of arginine deiminase (ADI) pathway genes   总被引:10,自引:0,他引:10  
We have analyzed the evolution of the three genes encoding structural enzymes of the arginine deiminase (ADI) pathway, arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) in a wide range of organisms, including Archaea, Bacteria, and Eukarya. This catabolic route was probably present in the last common ancestor to all the domains of life. The results obtained indicate that these genes have undergone a complex evolutionary history, including horizontal transfer events, duplications, and losses. Therefore, these genes are not adequate to infer organismal relationships at deep branching levels, but they provide an insight into how catabolic genes evolved and were assembled into metabolic pathways. Our results suggest that the three genes evolved independently and were later assembled into a single cluster with functional interdependence, thus, providing support for the gene recruitment hypothesis. Furthermore, the molecular phylogenetic analysis of OTC suggests a new classification of these genes into three subfamilies.  相似文献   

12.
The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the γ-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.  相似文献   

13.
The ability to fix nitrogen is widely, but sporadically distributed among the Bacteria and Archaea suggesting either a vertically inherited, ancient function with widespread loss across genera or an adaptive feature transferred laterally between co-inhabitants of nitrogen-poor environments. As previous phylogenetic studies of nifH and nifD have not completely resolved the evolutionary history of nitrogenase, sixty nifD, nifK, and combined nifDK genes were analyzed using Bayesian, maximum likelihood, and parsimony algorithms to determine whether the individual and combined datasets could provide additional information. The results show congruence between the 16S and nifDK phylogenies at the phyla level and generally support vertical descent with loss. However, statistically significant differences between tree topographies suggest a complex evolutionary history with the underlying pattern of vertical descent obscured by recurring lateral transfer events and different patterns of evolution between the genes. Results support inheritance from the Last Common ancestor or an ancient lateral transfer of the nif genes between Bacteria and Archaea, ongoing gene transfer between cohabitants of similar biogeographic regions, acquisition of nitrogen-fixing capability via symbiosis islands, possible xenologous displacement of one gene in the operon, and possible retention of ancestral genes in heterocystous cyanobacteria. Analyses support the monophyly of the Cyanobacteria, αβγ-Proteobacteria, and Actinobacteria (Frankia) and provide strong support for the placement of Frankia nif genes at the base of combined the Cyanobacteria/Proteobacteria clades.  相似文献   

14.
Summary A model has been proposed to account for growth inhibition by L-histidine in a variant strain of Nostoc muscorum. This strain has been characterized for its response to 3-amino-1,2,4-triazole and 1,2,4-triazole-3-alanine known to act as false corepressors of the histidine biosynthesis genes. The histidine sensitive strain retained its sensitivity to triazole alanine while the inhibitory effects of aminotriazole were much reduced indicating a change in regulation of his genes. The probable interactions between nif and his genes in cyanobacteria (blue-green algae) have been discussed.  相似文献   

15.

Background

It is generally assumed that primordial cells had small genomes with simple genes coding for enzymes able to react with a wide range of chemically related substrates, interconnecting different metabolic routes. New genes coding for enzymes with a narrowed substrate specificity arose by paralogous duplication(s) of ancestral ones and evolutionary divergence. In this way new metabolic pathways were built up by primordial cells. Useful hints to disclose the origin and evolution of ancestral metabolic routes and their interconnections can be obtained by comparing sequences of enzymes involved in the same or different metabolic routes. From this viewpoint, the lysine, arginine, and leucine biosynthetic routes represent very interesting study-models. Some of the lys, arg and leu genes are paralogs; this led to the suggestion that their ancestor genes might interconnect the three pathways. The aim of this work was to trace the evolutionary pathway leading to the appearance of the extant biosynthetic routes and to try to disclose the interrelationships existing between them and other pathways in the early stages of cellular evolution.

Results

The comparative analysis of the genes involved in the biosynthesis of lysine, leucine, and arginine, their phylogenetic distribution and analysis revealed that the extant metabolic "grids" and their interrelationships might be the outcome of a cascade of duplication of ancestral genes that, according to the patchwork hypothesis, coded for unspecific enzymes able to react with a wide range of substrates. These genes belonged to a single common pathway in which the three biosynthetic routes were highly interconnected between them and also to methionine, threonine, and cell wall biosynthesis. A possible evolutionary model leading to the extant metabolic scenarios was also depicted.

Conclusion

The whole body of data obtained in this work suggests that primordial cells synthesized leucine, lysine, and arginine through a single common metabolic pathway, whose genes underwent a set of duplication events, most of which can have predated the appearance of the last common universal ancestor of the three cell domains (Archaea, Bacteria, and Eucaryotes). The model proposes a relative timing for the appearance of the three routes and also suggests a possible evolutionary pathway for the assembly of bacterial cell-wall.
  相似文献   

16.
Renato Fani 《Evolution》2012,5(3):367-381
The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present on the primordial Earth imposed an important selective pressure, favoring those primordial heterotrophic cells that became able to synthesize those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria, and Eukarya reveal that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the emergence of new metabolic abilities. Among these gene elongations, gene and operon duplications played a crucial role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence, giving rise to new genes coding for new metabolic abilities. Concerning the mechanisms of pathway assembly, both the analysis of completely sequenced genomes and directed evolution experiments strongly support the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis, suggests that other different hypothesis, i.e., the retrograde hypothesis, may account for the evolution of some steps within metabolic pathways.  相似文献   

17.
The tRNA split genes of Nanoarchaeum equitans and the Met-tRNAfMet → fMet-tRNAfMet pathway, identifiable as ancestral traits, and the late appearance of DNA are used to understand the evolutionary stage at which the progenote → genote transition took place. The arguments are such as to impose that not only was the last universal common ancestor (LUCA) a progenote, but the ancestors of Archaea and Bacteria were too. Therefore, the progenote → genote transition took place in a very advanced stage of the evolution of the tree of life, and only when the ancestors of Archaea and Bacteria were already defined. These conclusions are in disagreement with commonly held beliefs.  相似文献   

18.
The common assumption of operons as composed of genes that cooperate in a biological process is confirmed here by showing that Escherichia coli operons tend to be composed of genes that belong to the same general class of cellular function. Furthermore, the comparison between the genomic organization of E. coli and that of Bacillus subtilis shows that the genes that are homologous to genes that belong to experimentally characterized E. coli operons tend to cluster in neighboring regions of the genome. This tendency is greater for the subset of E. coli operons whose genes belong to a single functional class. These observations indicate strong evolutionary pressure that, translated into functional constraints, leads to the inclusion of many essential functions in conserved operons and clusters in these two distant species.  相似文献   

19.
In translation, separate aminoacyl-tRNA synthetases attach the 20 different amino acids to their cognate tRNAs, with the exception of glutamine. Eukaryotes and some bacteria employ a specific glutaminyl-tRNA synthetase (GlnRS) which other Bacteria, the Archaea (archaebacteria), and organelles apparently lack. Instead, tRNAGln is initially acylated with glutamate by glutamyl-tRNA synthetase (GluRS), then the glutamate moiety is transamidated to glutamine. Lamour et al. [(1994) Proc Natl Acad Sci USA 91:8670–8674] suggested that an early duplication of the GluRS gene in eukaryotes gave rise to the gene for GlnRS—a copy of which was subsequently transferred to proteobacteria. However, questions remain about the occurrence of GlnRS genes among the Eucarya (eukaryotes) outside of the ``crown' taxa (animals, fungi, and plants), the distribution of GlnRS genes in the Bacteria, and their evolutionary relationships to genes from the Archaea. Here, we show that GlnRS occurs in the most deeply branching eukaryotes and that putative GluRS genes from the Archaea are more closely related to GlnRS and GluRS genes of the Eucarya than to those of Bacteria. There is still no evidence for the existence of GlnRS in the Archaea. We propose that the last common ancestor to contemporary cells, or cenancestor, used transamidation to synthesize Gln-tRNAGln and that both the Bacteria and the Archaea retained this pathway, while eukaryotes developed a specific GlnRS gene through the duplication of an existing GluRS gene. In the Bacteria, GlnRS genes have been identified in a total of 10 species from three highly diverse taxonomic groups: Thermus/Deinococcus, Proteobacteria γ/β subdivision, and Bacteroides/Cytophaga/Flexibacter. Although all bacterial GlnRS form a monophyletic group, the broad phyletic distribution of this tRNA synthetase suggests that multiple gene transfers from eukaryotes to bacteria occurred shortly after the Archaea–eukaryote divergence.  相似文献   

20.
Bacteria that have adapted to nutrient‐rich, stable environments are typically characterized by reduced genomes. The loss of biosynthetic genes frequently renders these lineages auxotroph, hinging their survival on an environmental uptake of certain metabolites. The evolutionary forces that drive this genome degradation, however, remain elusive. Our analysis of 949 metabolic networks revealed auxotrophies are likely highly prevalent in both symbiotic and free‐living bacteria. To unravel whether selective advantages can account for the rampant loss of anabolic genes, we systematically determined the fitness consequences that result from deleting conditionally essential biosynthetic genes from the genomes of Escherichia coli and Acinetobacter baylyi in the presence of the focal nutrient. Pairwise competition experiments with each of 20 mutants auxotrophic for different amino acids, vitamins, and nucleobases against the prototrophic wild type unveiled a pronounced, concentration‐dependent growth advantage of around 13% for virtually all mutants tested. Individually deleting different genes from the same biosynthesis pathway entailed gene‐specific fitness consequences and loss of the same biosynthetic genes from the genomes of E. coli and A. baylyi differentially affected the fitness of the resulting auxotrophic mutants. Taken together, our findings suggest adaptive benefits could drive the loss of conditionally essential biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号