首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
Mouse serum beta-nerve growth factor (NGF) levels were measured using a newly developed competitive beta-NGF radioimmunoassay. The basal serum beta-NGF levels in male and female mice were consistently less than 2 ng/ml when these animals were maintained in individual cages for at least 7 days before they were killed. However, in male mice, serum beta-NGF levels were significantly elevated when they were housed 5 per cage. The rise in serum beta-NGF levels, presumably mediated by intermale aggression, was confirmed by grouping previously isolated mice together in one cage for 20 min before they were killed. In all aggressive male mice, serum beta-NGF levels were elevated by two orders of magnitude. The beta-NGF radioimmunoassay values were also validated by a neurite outgrowth bioassay system using the serum of aggressive male mice. In summary, both measurement techniques confirm that mouse serum beta-NGF levels undergo marked changes depending on animal handling conditions.  相似文献   

2.
Axotomized peripheral neurons are capable of regeneration, and the rate of regeneration can be enhanced by a conditioning lesion (i.e., a lesion prior to the lesion after which neurite outgrowth is measured). A possible signal that could trigger the conditioning lesion effect is the reduction in availability of a target‐derived factor resulting from the disconnection of a neuron from its target tissue. We tested this hypothesis with respect to nerve growth factor (NGF) and sympathetic neurons by administering an antiserum to NGF to adult mice for 7 days prior to explantation or dissociation of the superior cervical ganglion (SCG) and subsequently measuring neurite outgrowth. The antiserum treatment dramatically lowered the concentration of NGF in the SCG and increased the rate of neurite outgrowth in both explants and cell cultures. The increase in neurite outgrowth was similar in magnitude to that seen after a conditioning lesion. To determine if exogenous NGF could block the effect of a conditioning lesion, mice were injected with NGF or cytochrome C immediately prior to unilateral axotomy of the SCG, and for 7 days thereafter. A conditioning lesion effect of similar magnitude was seen in NGF‐treated and control animals. While NGF treatment increased NGF levels in the contralateral control ganglion, it did not significantly elevate levels in the axotomized ganglion. The results suggest that the decreased availability of NGF after axotomy is a sufficient stimulus to induce the conditioning lesion effect in sympathetic neurons. While NGF administration did not prevent the conditioning lesion effect, this may be due to the markedly decreased ability of sympathetic neurons to accumulate the growth factor after axotomy. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

3.
Axotomized peripheral neurons are capable of regeneration, and the rate of regeneration can be enhanced by a conditioning lesion (i.e., a lesion prior to the lesion after which neurite outgrowth is measured). A possible signal that could trigger the conditioning lesion effect is the reduction in availability of a target-derived factor resulting from the disconnection of a neuron from its target tissue. We tested this hypothesis with respect to nerve growth factor (NGF) and sympathetic neurons by administering an antiserum to NGF to adult mice for 7 days prior to explantation or dissociation of the superior cervical ganglion (SCG) and subsequently measuring neurite outgrowth. The antiserum treatment dramatically lowered the concentration of NGF in the SCG and increased the rate of neurite outgrowth in both explants and cell cultures. The increase in neurite outgrowth was similar in magnitude to that seen after a conditioning lesion. To determine if exogenous NGF could block the effect of a conditioning lesion, mice were injected with NGF or cytochrome C immediately prior to unilateral axotomy of the SCG, and for 7 days thereafter. A conditioning lesion effect of similar magnitude was seen in NGF-treated and control animals. While NGF treatment increased NGF levels in the contralateral control ganglion, it did not significantly elevate levels in the axotomized ganglion. The results suggest that the decreased availability of NGF after axotomy is a sufficient stimulus to induce the conditioning lesion effect in sympathetic neurons. While NGF administration did not prevent the conditioning lesion effect, this may be due to the markedly decreased ability of sympathetic neurons to accumulate the growth factor after axotomy.  相似文献   

4.
Dorsal root ganglia from 8-day chick embryos can be stimulated to extend nerve processes in culture by inclusion of cytosine arabinoside (Ara-C) in the culture medium, in the absence of exogenous nerve growth factor (NGF). The degree of stimulation is dose dependent, and is not mimicked by either free cytosine or free arabinose. Since Ara-C is known to inhibit DNA synthesis, other inhibitors of DNA synthesis were tested. Hydroxyurea, fluorodeoxyuridine, and 3 mM thymidine all stimulated nerve outgrowth in the absence of exogenous NGF. In addition, bromodeoxyuridine also stimulated nerve outgrowth. In all cases, stimulation was observable after 24 h of culture, with maximal outgrowth achieved by 72 h of culture. The experimental response was never as large as the response to NGF, but was up to seven times greater than control outgrowth. In all cultures, nerve processes were characterized by growth cones at their distal tips, colchicine-sensitivity, and a high tubulin content visualized by immunofluorescence with anti-tubulin antibody.  相似文献   

5.
The response of embryonic chick nodose ganglion (neural placode-derived) and dorsal root ganglion (neural crest-derived) sensory neurons to the survival and neurite-promoting activity of brain-derived neurotrophic factor (BDNF) was studied in culture. In dissociated, neuron-enriched cultures established from chick embryos between Day 6 (E6) and Day 12 (E12) of development, both nodose ganglion (NG) and dorsal root ganglion (DRG) neurons were responsive on laminin-coated culture dishes to BDNF. In the case of NG, BDNF elicited neurite outgrowth from 40 to 50% of the neurons plated at three embryonic ages; E6, E9, and E12. At the same ages, nerve growth factor (NGF) alone or in combination with BDNF, had little or no effect upon neurite outgrowth from NG neurons. The response of NG neurons to BDNF was dose dependent and was sustainable for at least 7 days in culture. Surprisingly, in view of a previous study carried out using polyornithine as a substrate for neuronal cell attachment, on laminin-coated dishes BDNF also sustained survival and neurite outgrowth from a high percentage (60-70%) of DRG neurons taken from E6 embryos. In marked contrast to NG neurons, the combined effect of saturating levels of BDNF and NGF activity on DRG neurons was greater than the effect of either agent alone at all embryonic ages studied. Under similar culture conditions, BDNF did not elicit survival and neurite outgrowth from paravertebral chain sympathetic neurons or parasympathetic ciliary ganglion neurons. We propose that primary sensory neurons, regardless of their embryological origin, are responsive to a "central-target" (CNS) derived neurotrophic factor--BDNF, while they are differentially responsive to "peripheral-target"-derived growth factors, such as NGF, depending on whether the neurons are of neural crest or placodal origin.  相似文献   

6.
Mature retinal ganglion cells (RGCs) do not normally regenerate severed axons after optic nerve injury and show only little neurite outgrowth in culture. However, RGCs can be transformed into an active regenerative state after lens injury (LI) enabling these neurons to regrow axons in vitro and in vivo. In the current study we investigated the role of CK1δ and CK1ε activity in neurite outgrowth of LI stimulated RGCs and nerve growth factor (NGF) stimulated PC12 cells, respectively. In both cell types CK1δ and ε were localized in granular particles aligned at microtubules in neurites and growth cones. Although LI treatment did not measurably affect the expression of CK1δ and ε, it significantly elevated the specific kinase activity in the retina. Similarly, CK1δ/ε specific kinase activity was also elevated in NGF treated PC12 cells compared with untreated controls. Neurite extension in PC12 cells was associated with a change in the activity of CK1δ C-terminal targeting kinases, suggesting that activity of these kinases might be necessary for neurite outgrowth. Pharmacological inactivation of CK1δ and ε markedly compromised neurite outgrowth of both, PC12 cells and LI stimulated RGCs in a concentration dependent manner. These data provide evidence for a so far unknown, but essential role of CK1 isoforms in neurite growth.  相似文献   

7.
《Developmental biology》1985,111(1):62-72
Explants of cranial sensory ganglia and dorsal root ganglia from embryonic chicks of 4 to 16 days incubation (E4 to E16) were grown for 24 hr in collagen gels with and without nerve growth factor (NGF) in the culture medium. NGF elicited marked neurite outgrowth from neural crest-derived explants, i.e., dorsal root ganglia, the dorsomedial part of the trigeminal ganglion, and the jugular ganglion. This response was first observed in ganglia taken from E6 embryos, reached a maximum between E8 and E11, and gradually declined through E16. Explants in which the neurons were of placodal origin varied in their response to NGF. There was negligible neurite outgrowth from explants of the ventrolateral part of the trigeminal ganglion and the vestibular ganglion grown in the presence of NGF. The geniculate, petrosal, and nodose ganglia exhibited an early moderate response to NGF. This was first evident in ganglia taken from E5 embryos, reached a maximum by E6, and declined through later ages, becoming negligible by E13. Dissociated neuron-enriched cultures of vestibular, petrosal, jugular, and dorsal root ganglia were established from embryos taken at E6 and E9. At both ages NGF elicited neurite outgrowth from a substantial proportion of neural crest-derived neurons (jugular and dorsal root ganglia) but did not promote the growth of placode-derived neurons (vestibular and petrosal ganglia). Our findings demonstrate a marked difference in the response of neural crest and placode-derived sensory neurones to NGF. The data from dissociated neuron-enriched cultures suggest that NGF promotes survival and growth of sensory ganglionic neurons of neural crest origin but not of placodal origin. The data from explant cultures suggest that NGF promotes neurite outgrowth from placodal neurons of the geniculate, petrosal, and nodose ganglia early in their ontogeny. However, we argue that this fibre outgrowth emanates not from the placodal neurons but from neural crest-derived cells which normally give rise only to satellite cells of these ganglia.  相似文献   

8.
周振华 《生理学报》1985,37(6):510-516
在培养的鸡胚背根神经节上观察了 C-H_3(GhineseH_3)、神经生长因子(NGF)以及 C-H_3和 NGF 的混合剂对神经细胞的影响。主要结果如下:1.C-H_3处理的标本和对照组没有差别。培养3d 的节神经细胞数平均约420个;6d 时,部分细胞衰退,降到200个。2.NGF 能促进节神经纤维外长,增加神经母细胞向神经元的转变。培养3d 的节神经细胞数平均约700个;6d 时720个。NGF 维持神经元的存活,延缓神经元的衰退。3.C-H_3和NGF 的混合剂不仅增进节神经纤维的长出,而且还延缓了长出纤维的消退,消失时程比NGF 组延长一倍。培养3d 的节神经细胞数平均约1000个,是2.4倍于对照,1.4倍于 NGF组;培养6d 时1120个,为对照组的5倍,NGF 组的1.5倍。混合剂的效果比 NGF 更好。结果表明,C-H_3增强 NGF 对培养的节神经细胞存活的效应。  相似文献   

9.
Explant and dissociated neuron-enriched cultures of nodose ganglia (inferior or distal sensory ganglion of the Xth cranial nerve) were established from chick embryos taken between embryonic Day 4 (E4) and Day 16 (E16). The response of each type of culture to nerve growth factor (NGF) was examined over this developmental range. At the earliest ages taken (E4-E6), NGF elicited modest neurite outgrowth from ganglion explants cultured in collagen gel for 24 hr, although the effect of NGF on ganglia taken from E4 chicks was only marginally greater than spontaneous neurite extension from control ganglia of the same developmental age. The response of nodose explants to NGF was maximal at E6-E7, but declined to a negligible level in ganglia taken from E9-E10 or older chick embryos. In dissociated neuron-enriched cultures, nodose ganglion neurons were unresponsive to NGF throughtout the entire developmental age range between E5 and E12. In contrast to the lack of effect of NGF, up to 50% of nodose ganglion neurons survived and produced extensive neurites in dissociated cultures, on either collagen- or polylysine-coated substrates, in the presence of extracts of late embryonic or early posthatched chick liver (E18-P7). Antiserum to mouse NGF did not block the neurotrophic activity of chick (or rat or bovine) liver extracts. Whether cultured with chick liver extract alone or with chick liver extract plus NGF, nodose ganglion neurons taken from E6-E12 chick embryos and maintained in culture for 2 days were devoid of NGF receptors, as assessed by autoradiography of cultures incubated with 125I-NGF. Under similar conditions 70-95% of spinal sensory neurons (dorsal root ganglion--DRG) were heavily labeled. 2+  相似文献   

10.
Treatment for peripheral nerve injuries includes the use of autografts and nerve guide conduits (NGCs). However, outcomes are limited, and full recovery is rarely achieved. The use of nerve scaffolds as a platform to surface immobilize neurotrophic factors and deliver locally is a promising approach to support neurite and nerve outgrowth after injury. We report on a bioactive surface using functional amine groups, to which heparin binds electrostatically. X-ray photoelectron spectroscopy analysis was used to characterize the presence of nitrogen and sulfur. Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were bound by electrostatic interaction to heparin, and the release profile evaluated by enzyme-linked immunosorbent assay, which showed that ca. 1% of NGF was released from each of the bioactive surface within 7 days. Furthermore, each surface showed a maximum release of 97% of BDNF. Neurotrophin release on neurite outgrowth was evaluated by primary dorsal root ganglion with a maximum neurite growth response in vitro of 1,075 µm detected for surfaces immobilized with NGF at 1 ng/ml. In summary, the study reports on the design and construction of a biomimetic platform to deliver NGF and BDNF using physiologically low concentrations of neurotrophin. The platform is directly applicable and scalable for improving the regenerative ability of existing NGCs and scaffolds.  相似文献   

11.
Nerve Growth Factor (NGF)-mediated fiber outgrowth in pheochromocytoma PC12 cells is a slow process, developing over a period of several days. However, if these cells are pre-exposed to NGF for 7-10 days, renewed NGF treatment of the subcultured cells elicits fiber outgrowth within 24 h, comparable to the rate of response of physiological target cells to NGF. The present experiments demonstrated that this effect, previously termed "priming", was accompanied by a 60% increase in the volume of the PC12 cells, and that the dose-response curves for NGF-mediated induction of fiber outgrowth and for the increase in cell volume were very similar. Furthermore, the rates of NGF-mediated fiber outgrowth and of cell volume increase were both much slower in conventional PC12 cells (slow-reacting) compared to a newly-selected, fast-responding (FR)subclone of PC12 cells. These results suggested a possible causal relationship between the increase in cell volume and the induction of fiber outgrowth. However, when the cells were pre-exposed for 7 days to dibutyryl-cAMP (db-cAMP), the increase in cell volume was 3-fold higher than that effected by NGF. Nevertheless, db-cAMP had only a very limited ability to "prime" the cells for a subsequent response to NGF. Thus, the induction of cell volume increase and the increased availability of structural elements is not sufficient to explain the "priming" effect of NGF. The effects of db-cAMP are discussed in the context of a possible role of cAMP as a second messenger in the action of NGF.  相似文献   

12.
The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12.  相似文献   

13.
Abstract: Suramin is a polysulfonated naphthylurea with demonstrated antineoplastic activity. Toxicity includes adrenal insufficiency and peripheral neuropathy. Although the mechanism of antitumor activity is unknown, inhibition of binding of growth factors to their receptors has been suggested. Growth factors inhibited by suramin include platelet-derived growth factor, fibroblast growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, and nerve growth factor (NGF). In these studies, suramin was shown to be cytotoxic to PC12 cells in a dose-dependent manner. At lower doses and in surviving cells, we observed the induction of neurite outgrowth. To determine the mechanism of suramin-induced neurite outgrowth, PC12 cells were exposed to suramin and/or NGF for various time periods and treated cells were analyzed, by western blot analysis, for expression of tyrosine phosphoproteins. There was a similarity in the pattern of tyrosine-phosphorylated proteins in PC12 cells stimulated with suramin or NGF. Of particular interest was the rapid phosphorylation (by 1 min) of the high-affinity NGF (TrkA) receptor. Activation of other members of the signal-transduction cascade (Shc, p21 ras , Raf-1, ERK-1) revealed similar phosphorylation levels induced by suramin and NGF. Parallel studies were performed in rat dorsal root ganglion cultures; suramin potentiated neurite outgrowth and activated the NGF receptor on these cells. This finding of specific patterns of tyrosine phosphorylation of cellular proteins in response to suramin treatment demonstrated that suramin is a partial agonist for the NGF receptor in both PC12 cells and dorsal root ganglion neurons.  相似文献   

14.
This report describes the influence of neurite fasciculation on two aspects of nerve growth from chick spinal ganglia in vitro: the inhibition of outgrowth by high concentrations of nerve growth factor (NGF) and the preferential growth of neurites toward a capillary tube containing NGF. These studies involved a comparison of cultures of single cells, cell aggregates, and intact ganglia and the use of antibodies against the nerve cell adhesion molecule (CAM) to perturb fasciculation under a variety of conditions. The inhibition of outgrowth, which was observed with ganglia and aggregates but not with single cells, was correlated with a thickening of neurite fascicles. In accord with this observation, anti-CAM, which diminishes fasciculation by inhibiting side-to-side interactions between individual neurites, also partially reversed the inhibition of neurite outgrowth at high NGF concentrations. On the basis of these and other studies, we consider the possibility that neurite bundling causes an increase in the elastic tension of a fascicle without a compensatory increase in its adhesion to substratum. It is proposed that this imbalance could inhibit neurites from growing out from a ganglion and even result in retraction of preexisting outgrowth. In the analysis of NGF-directed growth, it was found that a capillary source of NGF produced a steep but transient NGF gradient that subsided before most neurites had emerged from the ganglion. Nevertheless, the presence of a single NGF capillary caused a dramatic and persistent asymmetry in the outgrowth of neurites from ganglia or cell aggregates. In contrast, processes of individual cells did not appear to orient themselves toward the capillary. The most revealing finding was that anti-CAM antibodies caused a decrease in the asymmetry of neurite outgrowth. These results suggest that side-to-side interactions among neurites can influence the guidance of nerve bundles by sustaining and amplifying an initial directional signal.  相似文献   

15.
Regeneration of embryonic and adult dorsal root ganglion (DRG) sensory axons is highly impeded when they encounter neuronal growth cone-collapsing factor semaphorin3A (Sema3A). On the other hand, increasing evidence shows that DRG axon’s regeneration can be stimulated by nerve growth factor (NGF). In this study, we aimed to evaluate whether increased NGF concentrations can counterweight Sema3A-induced inhibitory responses in 15-day-old mouse embryo (E15) DRG axons. The DRG explants were grown in Neurobasal-based medium with different NGF concentrations ranging from 0 to 100 ng/mL and then treated with Sema3A at constant 10 ng/mL concentration. To evaluate interplay between NGF and Sema3A number of DRG axons, axon outgrowth distance and collapse rate were measured. We found that the increased NGF concentrations abolish Sema3A-induced inhibitory effect on axon outgrowth, while they have no effect on Sema3A-induced collapse rate.  相似文献   

16.
A nerve growth factor (NGF)-like factor initiating nerve fibre outgrowth from sympathetic ganglia in culture was partially purified from chick embryo extract by cation-exchange chromatography followed by hydrophobic interaction chromatography on octylsulfide agarose. The NGF-like factor was markedly activated upon gel filtration in the presence of 6 M urea. Further analysis of the activated chick NGF by immunoblotting following SDS-PAGE, and by inhibition of bioassay response using antibodies to mouse beta NGF demonstrated a distinct antigenic cross-reactivity. The size of the chick embryo NGF was also indistinguishable from that of the mouse beta NGF with a molecular weight (MW) of about 14,000. The findings demonstrate directly the presence of biologically active NGF protein in the developing 18-day chick embryo.  相似文献   

17.
Previous studies in our laboratory showed that neurite outgrowth in vitro and nerve regeneration in vivo were stimulated by 2 Hz, 0.3 mT (3 G) pulsed electromagnetic fields (PEMF). To learn more about the effects of PEMF on nerve cells, we exposed PC6 cells, a standard neuronal-like cell model, to the same pulsed electromagnetic fields for 2 h/day for 2 days and asked whether two different cell processes, proliferation and differentiation, were affected. The cells were also treated with a differentiating agent, nerve growth factor (NGF), to further define any interactive effects. We found that proliferation was unaffected by either PEMF or NGF alone or in combination. Differentiation, expressed as neurite outgrowth, was strongly upregulated with NGF, but this NGF response was significantly depressed in cells treated with PEMF.  相似文献   

18.
19.
A number of different studies have shown that neurotrophins, including nerve growth factor (NGF) support the survival of retinal ganglion neurons during a variety if insults. Recently, we have reported that that eye NGF administration can protect also photoreceptor degeneration in a mice and rat with inherited retinitis pigmentosa. However, the evidence that NGF acts directly on photoreceptors and that other retinal cells mediate the NGF effect could not be excluded. In the present study we have isolated retinal cells from rats with inherited retinitis pigmentosa (RP) during the post-natal stage of photoreceptor degenerative. In presence of NGF, these cells are characterized by enhanced expression of NGF-receptors and rhodopsin, the specific marker of photoreceptor and better cell survival, as well as neuritis outgrowth. Together these observations support the hypothesis that NGF that NGF acts directly on photoreceptors survival and prevents photoreceptor degeneration as previously suggested by in vivo studies.  相似文献   

20.
—It has long been known that the activity of nerve growth factor (NGF) in extracts obtained from the male mouse submaxillary gland is higher than in extracts from the female gland, and that the activity present in female glands can be increased by testosterone treatment. This communication presents a study of the mechanism of the testosterone effect. Of several different steroids administered to female Swiss–Webster mice only testosterone propionate led to increased gland NGF activity. The increase did not appear to be due to an enhancement of the activity of pre-existing molecules on sympathetic nerve fiber outgrowth, or due to an altered affinity for the specific antibodies used in the estimation of NGF content, but appeared rather to be due to an accumulation of NFG molecules. The kinetics of change in the male gland NGF content upon castration and secondary testosterone propionate stimulation was analyzed by application of the plateau principle. The rate of loss of NGF from this organ was not measureably different between the castrate and testosterone propionate stimulated state. On the other hand, there was estimated to be a 10-fold difference in the rate of input between the basal and steroid stimulated state. Tracer amounts of radioiodine labelled NGF administered i.v. was not accumulated by the gland, and there is no evidence for uptake of this protein from the circulation. We, therefore, infer that the increased NGF concentration in male submaxillary glands is due to a 10-fold increase in the rate constant of synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号