首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The half-time for secretion of the plasma protein C-reactive protein (CRP) by the hepatocyte decreases markedly in association with its increased synthesis during the acute phase response to tissue injury (Macintyre, S., D. Samols, and I. Kushner. 1985. J. Biol. Chem. 260:4169-4173). In studies in which subcellular fractions were prepared from cells incubated under pulse-chase conditions, CRP was found to be preferentially retained within the ER of normal hepatocytes, but secreted relatively efficiently in cells prepared from rabbits undergoing the acute phase response. On the basis of the detergent-dependency of specific binding of radiolabeled CRP, as well as EM visualization of biotinylated CRP identified with peroxidase-conjugated streptavidin, CRP was found to bind to the lumenal surface of permeabilized rough microsomes, while no binding was detected in Golgi fractions. As judged by both kinetic and equilibrium binding studies, rough microsomes from control rabbits were found to have two classes of specific binding sites for CRP; a high affinity site (Kd = 1 nM, Bmax = 1 pmol CRP/mg microsomal protein) as well as a much lower affinity (Kd = 140 nM) site. In contrast, only the lower affinity class was detected in microsomes isolated from rabbits undergoing the acute phase response. On nitrocellulose blots probed with radiolabeled CRP a 60-kD protein, distinct from BiP, was detected in extracts of rough microsomes isolated from control rabbits, but not in Golgi fractions or rough microsomes from stimulated animals. These findings correlate with previous observations of changes in secretion kinetics of CRP and are consistent with the hypothesis that the intracellular sorting of CRP could be rerouted by downregulation of a specific ER binding site during the acute phase response.  相似文献   

2.
We studied the kinetics of synthesis and secretion of the acute phase plasma protein, C-reactive protein, in primary hepatocyte cultures prepared from rabbits manifesting differing degrees of the acute phase response to inflammatory stimulus. In cultures prepared from progressively more responsive animals, rate of C-reactive protein secretion increased to a much greater degree than did intracellular C-reactive protein content, resulting in a progressive decrease in the ratio of intracellular content to rate of secretion. This ratio, which represents the time required to secrete the amount of C-reactive protein contained within the intracellular pool, decreased from 18 h in cultures from unstimulated rabbits to 2.5 h in cells from highly responsive animals. In contrast, these ratios for albumin were short and fell within a narrow range (0.8-2.1 h). In pulse-chase labeling experiments, the time required for secretion of 50% of pulse-labeled C-reactive protein varied markedly, ranging from well over 6 h in cells from a minimally responsive animal to about 75 min in cells from a highly responsive rabbit. In contrast, the half-time for secretion of albumin was consistently about 45 min in the same cultures. Taken together, these findings indicate that the process by which C-reactive protein is secreted becomes more efficient during the course of the acute phase response. Recent studies have indicated that secretory proteins pass from the rough endoplasmic reticulum to Golgi at different and characteristic rates, possibly by a receptor-mediated process in which rate of transfer is determined by receptor affinity. We postulate that C-reactive protein secretion is regulated, during the course of the acute phase response, either by alterations in availability of specific receptors or by competition between different secretory proteins for a common receptor.  相似文献   

3.
Rabbit hepatocytes isolated after liver perfusion with collagenase were maintained in primary monolayer culture for periods up to 96 h. Bile acid synthesis and secretion was measured by capillary gas-liquid chromatography and by a rapid enzymatic-bioluminescence assay. As expected from the bile acid profile of rabbit gallbladder bile, cholic acid was the only bile acid synthesized in detectable amounts and was produced at a linear rate of 170 pmol/h per mg cell protein from 24 to 96 h in culture. Ketoconazole (20 microM) inhibited cholic acid synthesis and secretion by 78%, whereas the bile acids chenodeoxycholic acid (100 microM), deoxycholic acid (100 microM) or lithocholic acid (2 microM) had no effect. When rat hepatocytes were cultured under identical conditions, the rate of bile acid synthesis was found to be only 12 pmol/h per mg cell protein, a value in agreement with previous work. The large difference in rates of bile acid synthesis between rabbit and rat hepatocytes may be due to rapid loss of cytochrome P-450 from rat hepatocytes when placed in monolayer culture. Although reportedly active in cholesterol 7 alpha-hydroxylation, form 4 cytochrome P-450 levels in rabbit hepatocytes did not correlate with rates of bile acid synthesis.  相似文献   

4.
5.
Regulation of rabbit acute phase protein biosynthesis by monokines.   总被引:4,自引:0,他引:4       下载免费PDF全文
We defined the acute phase behaviour of a number of rabbit plasma proteins in studies (in vivo) and studied the effects of monokine preparations on their synthesis by rabbit primary hepatocyte cultures. Following turpentine injection, increased serum levels of C-reactive protein, serum amyloid A protein, haptoglobin, ceruloplasmin, and decreased concentrations of albumin were observed. In contrast to what is observed in man, concentrations of alpha 2-macroglobulin and transferrin were increased. Co-culture of primary hepatocyte cultures with lipopolysaccharide-activated human peripheral blood monocytes or incubation with conditioned medium prepared from lipopolysaccharide-activated human or rabbit monocytes resulted in dose-dependent induction of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and depression of albumin synthesis, while C-reactive protein synthesis and mRNA levels remained unchanged. A variety of interleukin-1 preparations induced dose-dependent increases in the synthesis and secretion of serum amyloid A, haptoglobin, ceruloplasmin and transferrin and decreased albumin synthesis. Human recombinant tumour necrosis factor (cachectin) induced a dose-dependent increase in synthesis of haptoglobin and ceruloplasmin. In general, human interleukin-1 was more potent than mouse interleukin-1 and tumour necrosis factor. None of the monokines we studied had an effect on C-reactive protein synthesis or mRNA levels. These data confirm that C-reactive protein, serum amyloid A, haptoglobin and ceruloplasmin display acute phase behaviour in the rabbit, and demonstrate that, in contrast to their behaviour in man, alpha 2M and transferrin are positive acute phase proteins in this species. While both interleukin-1 and tumour necrosis factor regulate biosynthesis of a number of these acute phase proteins in rabbit primary hepatocyte cultures, neither of these monokines induced C-reactive protein synthesis. Comparison of these findings with those in human hepatoma cell lines, in which interleukin-1 does not induce serum amyloid A synthesis, suggests that the effect of interleukin-1 on serum amyloid A synthesis may be indirect.  相似文献   

6.
Human C-reactive protein (CRP) is the major acute phase reactant during acute inflammation. The human CRP promoter is expressed in an inducible and cell-specific manner when linked to the bacterial CAT gene and transfected into human hepatoma cell cultures. In this paper we analyze the effect of several recombinant cytokines or CRP promoter inducibility in human Hep3B cells. When cytokines are tested singly the major inducer of CRP-CAT fusions is interleukin-6 (IL-6). Maximal CAT gene expression, however, is only achieved when both interleukin-1 beta (IL-1 beta) and IL-6 are present. The response to the two cytokines is cooperative. Cooperativity is maintained when the CRP promoter is linked to a different coding region, that of the bacterial neomycin phosphotransferase II gene. With a series of 5' and 3' deletions we show the existence of two distinct and independent regions responsive to IL-6 and located upstream to the TATA box. The IL-1 effect is exerted at the level of downstream sequences that are probably important for optimal mRNA translatability or nuclear-cytoplasmic transport. Inducibility is not influenced by the activation of protein kinases C or A and does not require new protein synthesis.  相似文献   

7.
8.
7-ketocholesterol, one of the major product of autoxidation of dietary cholesterol, was found to inhibit secretion of very low density lipoprotein [14C]cholesterol, [14C]triacylglycerol and [35S]apoprotein B,E,C by cultured human and rabbit hepatocytes. A parallel inhibition (about 35%) of cholesterol synthesis but not of triacylglycerol formation was observed. Incubation with 10 micrograms/ml of oxysterol also reduced the total apo-B secretion measured by ELISA and increased intracellular apo-B mRNA level. These results seem to indicate that 7-ketocholesterol decreases secretion of very low density lipoprotein (VLDL) particles and exerts inhibitory effects on apo-B production at the co-translational or posttranslational level.  相似文献   

9.
C-reactive protein (CRP) mRNA was assayed by cell-free translation of poly(A)-containing liver RNA isolated both from rabbits stimulated to undergo the acute-phase response and from unstimulated control rabbits. No CRP-related translation products were identified until the denaturant methylmercury hydroxide (CH3HgOH) was added to the RNA before cell-free translation. In the presence of the denaturant, a 24000-Da translation product was synthesized which was immunochemically identifiable as the CRP primary translation product. It is likely that rabbit CRP mRNA can form a stable intramolecular duplex which interferes with its translatability in vitro. The 24000-Da CH3HgOH-facilitated cell-free translation product was not detected in poly(A)-containing liver RNA from unstimulated animals, indicating that the concentration of translatable CRP mRNA was dramatically induced during the acute-phase response. On the basis of absorption experiments, the 24000-Da CRP primary translation product was immunochemically more closely related to denatured CRP than to native CRP.  相似文献   

10.
11.
The magnitude of activation of the type I and type II forms of cAMP-dependent protein kinase was investigated in estrous follicles and corpora lutea (CL) obtained from ovaries of control rabbits and rabbits injected acutely with human chorionic gonadotropin (hCG). To this end, a chromatographic technique which permitted quantitative evaluation of the in vivo activational state of the two forms of cAmP-dependent protein kinase was developed and verified. Results revealed that in follicles obtained from ovaries of untreated estrous rabbits, 15% of the soluble cAMP-dependent protein kinase, all of which exists as the type II isozyme, is activated. Intravenous administration of a single bolus of hCG promoted a concentration-dependent activation (in 10 min) of this protein kinase isozyme. In CL obtained from ovaries of control, 4-day pseudopregnant rabbits, 32% of the total soluble cAMP-dependent protein kinase exists as the type I form and 68% exists as the type II form. Both types of protein kinase are approximately 10% dissociated in CL from ovaries of untreated rabbits. Upon intravenous administration of hCG, only the type I form of cAMP-dependent protein kinase is further activated (in 10 min). Dissociation of this protein kinase is dependent upon the time and concentration of hCG. Preferential activation of the type I form of cAMP-dependent protein kinase in CL is also demonstrable in in vitro studies using exogenous cAMP. These data suggest that the physiological intracellular mediator of acute cAMP-regulated, hCG-triggered functions in rabbit ovarian follicles is the type II isozyme of cAMP-dependent protein kinase while in CL of 4-day pseudopregnant rabbits, it is the type I enzyme form.  相似文献   

12.
13.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

14.
Using human and rabbit hepatocyte cultures, the effects of khellin and timefurone on lipoprotein metabolism were studied with special reference to the following parameters: i) binding and degradation of 125I-labeled low density lipoproteins (LDL); ii) apoprotein B (apo-B) secretion measured by immunoenzymatic assay, iii) [35S]methionine labeled apo-B and apo-E within the composition of very low density lipoproteins (VLDL); iiii) total cholesterol synthesis and cholesterol secretion within the composition of VLDL. The therapeutic concentrations (0.1-10 micrograms/ml) of the above drugs had no appreciable effect on the binding and degradation of 125I-LDL but inhibited the secretion of apo-B VLDL, leaving the apo-E VLDL unaffected. This was paralleled with inhibition of cholesterol synthesis (by 30-50%) and VLDL secretion. These results suggest that khellin and timefurone mediate the hypolipidemic effect via the reduction of the intracellular synthesis of cholesterol and secretion of apo-B containing VLDL by hepatocytes.  相似文献   

15.
Rabbit spleen cells are not activated by Concanavalin A (Con A) conjugated to Sepharose 4B but are stimulated by soluble Con A which induces DNA and protein synthesis. At optimal concentration (5 μg/ml) one notes an increased intracellular protein and IgM synthesis and then secretion. This increase in protein synthesis is seen at all phases of the culture. At the intracellular level, IgM is found in the form of 7S molecules and a significant proportion of polymers with a centrifugation constant smaller than 19S. Fully assembled 19S polymers are found in the fluid phase. These results are compatible with a model of cellular cooperation, the basis of which is not the presentation of the inducer (mitogen or antigen) by a cell type to another, but rather the secretion of mediators by one of the cell populations making other cells responsive to the inducer.  相似文献   

16.
Interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF) are considered as important mediators for the modulation of liver synthesis of acute phase proteins. However, studies of the direct effect of individual or a combination of these cytokines on the synthesis of acute phase proteins in human hepatocytes are still very limited. In this study, we have examined the synthesis of C-reactive protein (CRP) and serum amyloid A (SAA) in primary cultures of human hepatocytes exposed to recombinant(r)IL-1 alpha (100 U/ml), rIL-6 (2000 U/ml), rTNF alpha (30 U/ml) and to various combinations of these cytokines in the presence of 1 microM dexamethasone. Monoclonal antibodies to rTNF alpha and monospecific anti-rIL-6 sheep antiserum were also used to investigate the possible endogenous production of TNF or IL-6. The findings indicate: (1) IL-1 and IL-6 are stimulatory cytokines for the liver synthesis of CRP and SAA. Anti IL-6 abolishes the stimulatory effect of IL-1. These findings support the previous observation and indicate that IL-1 exerts its action on the enhanced synthesis of CRP and SAA at least in part via IL-6 production in the liver cell. (2) TNF is an inhibitory cytokine for the liver synthesis of CRP. It inhibits also the stimulatory effect of IL-1 and IL-6 on the synthesis of CRP and SAA. (3) Since anti-TNF enhances the stimulatory effect of IL-6 on the synthesis of CRP and SAA, it seems likely that TNF is also produced by the human hepatocytes. However, further studies for more direct evidence of the liver cell production of TNF, such as the detection of TNF messenger RNA are required.  相似文献   

17.
Rat hepatic Cd-metallothionein was purified and isolated into its two components, metallothionein 1 and 2, by disc electrophoresis. Antibodies to metallothionein 2 were generated in rabbits. The antiserum reacted with the protein and formed a single precipitin band on a double diffusion plate. By ammonium sulfate precipitations, it was found that the antiserum cross-reacted with rat hepatic metallothionein 1. Cross-reactivity of the antiserum was also observed for components of rat renal Cd-metallothionein, rabbit hepatic Cd-metallothionein and human renal metallothionein.  相似文献   

18.
19.
An isolated rat hepatocyte preparation was used to study the cellular toxicity of cadmium and the protective effects of metallothionein on cadmium-induced toxicity. Exposure of primary suspension cultures of isolated rat hepatocytes to Cd2+ (0-35.7 microM) for 15 min resulted in a dose-dependent reduction in the synthesis of cellular proteins during a subsequent 6 h incubation. Such inhibition could not be correlated with cellular lethality or gross membrane damage. Pre-induction of metallothionein in hepatocytes by zinc treatment in vivo of donor rats protected hepatocytes in vitro from cadmium-induced inhibition of protein synthesis. The protective effects in zinc-pre-induced hepatocytes are not due to alterations in the level of total cellular cadmium, but could be accounted for by the redistribution of intracellular cadmium in the presence of high levels of zinc-metallothionein. The data suggest that metallothionein exerts its protective effect by a kinetic detoxification mechanism, i.e. a decrease in reactive intracellular cadmium.  相似文献   

20.
Adult mouse hepatocytes respond in vivo to experimentally induced acute inflammation by an increased synthesis and secretion of alpha 1-acid glycoprotein, haptoglobin, hemopexin, and serum amyloid A. Concurrently, the production of albumin and apolipoprotein A-1 is reduced. To define possible mediators of this response and to study their action in tissue culture, we established primary cultures of hepatocytes. Various hormones and factors that have been proposed to regulate the hepatic acute phase reaction were tested for their ability to modulate the expression of plasma proteins in these cells. Acute phase plasma and conditioned medium from activated monocytes influenced the production of most acute phase plasma proteins, and the regulation appears to occur at the level of functional mRNA. Purified hormones produced a significant anabolic response in only a few cases: dexamethasone was found to be effective in maintaining differentiated expression of the cells; and glucagon produced a specific inhibition of haptoglobin synthesis. When cells were treated with a combination of conditioned monocyte medium and dexamethasone, secretion of proteins was markedly reduced. The carbohydrate moieties of all plasma glycoproteins were incompletely modified, apparently as a result of decreased intracellular transport of newly synthesized plasma proteins. Although primary hepatocytes were not phenotypically stable in tissue culture, the cells nevertheless retained a broad response spectrum to exogenous signals. We propose this as a useful system to study the production of plasma proteins and thereby pinpoint the nature and activity of effectors mediating the hepatic acute phase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号