首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atlantic croaker (Micropogonias undulatus) were exposed to the polychlorinated biphenyl (PCB) mixture (Aroclor 1254) or one of three individual congeners (planar PCB 77 or ortho-substituted PCB 47 and PCB 153) in the diet for 30 days to investigate the effects of PCBs on circulating thyroid hormones, thyroxine (T4) and triiodothyronine (T3). Aroclor 1254 (0.2 and 1.0 mg/kg body mass/day) decreased plasma T3 levels consistently, but the effects on T4 levels were inconsistent from year to year. Exposure to PCB 153 (0.1 and 1.0 mg/kg body mass/day) significantly lowered both T4 and T3, while PCB 47 at the same doses had no effect on thyroid hormone levels. The lower doses of PCB 77 (0.004, 0.01 and 0.02 mg/kg body mass/day) had no effect on T4 or T3, whereas the highest dose (0.1 mg/kg body mass/day) increased T4 levels significantly. The results of the present study demonstrate that exposure to PCBs at environmentally realistic concentrations can have profound effects on the thyroid status of Atlantic croaker. The ortho-substituted PCB 153 appears to contribute at least partially to the deleterious effects of Aroclor 1254 on thyroid status, whereas the planar PCB 77 at concentrations present in the mixture is unlikely to alter thyroid hormone levels.  相似文献   

2.
The effects of neonatally administered phenobarbital (PB) on adult rat hepatic microsomal metabolism of testosterone were examined in 60-, 90-, and 120-day-old animals. Phenobarbital-induced imprinting was evident at all ages; however, female rats appeared to be more susceptible to the neonatal effects of phenobarbital than did male rats. In 60-day-old female rats, increased testosterone 2α-hydroxylase activity was observed in microsomes from noninduced rats, whereas decreased testosterone oxidation at all positions except 2α and 15β was observed in microsomes from Aroclor 1254-induced rats. The decreased oxidation of testosterone at specific sites in response to Aroclor 1254 induction was quite dramatic, decreasing the activities to near or below control levels. By contrast, phenobarbital-treated 60-day-old males exhibited approximately a twofold increase in Aroclor 1254-induced 16α and 2α-hydroxylase activities. The pattern of changes in testosterone metabolism observed in phenobarbital-treated animals was different at both 90 and 120 days from that at 60 days. Only minor alterations in the oxidation of testosterone were observed in 90-day-old animals of either sex. In 120-day-old animals the greatest effects of neonatal phenobarbital exposure were on Aroclor 1254–induced 16β-hydroxylase activities. In induced female rats 16β-hydroxylase activity was again decreased to noninduced levels, while in induced male rats a fourfold increase in this activity was observed. These results demonstrate that neonatal exposure to phenobarbital can alter both constitutive and Aroclor 1254–induced testosterone metabolism in adult rats and that the effects of neonatal phenobarbital exposure are age and sex differentiated.  相似文献   

3.
目的:探讨甲亢患者甲状腺激素水平与血脂代谢指标之间的关系。方法:对160例甲亢患者治疗前后的甲状腺激素(TH)水平、血脂水平进行对照分析。结果:甲亢治疗前后与健康对照组比较,游离三碘甲状腺原氨酸(FT3)、游离甲状腺素(FT4)明显增高,促甲状腺激素(TSH)明显降低,差异有统计学意义(P<0.01);总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白胆固醇(LDL-C)、载脂蛋白A(apoAΙ)、载脂蛋白B(apoB)均明显降低,且差异具有统计学意义(P<0.01);低密度脂蛋白胆固醇(HDL-C)无明显变化(P>0.05)。结论:甲状腺激素与脂类代谢密切相关,临床上在诊治甲亢患者时,应当加强血脂水平的监测,以便更好地指导临床诊治,为疾病的发生发展、判断预后提供有价值的实验室检测指标。  相似文献   

4.
1. Constitutive and Aroclor 1254-induced hepatic glutathione (GSH) S-transferases, GSH peroxidase and GSH reductase activities were determined in 12 strains of 8-10 week-old inbred male mice. 2. The constitutive GSH S-transferase activity varied from 2.5 (SJL/JCR) to 8.9 (C57BL/6N) mumol/min/mg protein and the corresponding values for the Aroclor 1254-treated mice were in the range of 7.1-23.0 mumol/min/mg protein. Aroclor 1254 significantly induced GSH S-transferase activity in all mice, however, significant interstrain differences were found in inducibility. 3. Aroclor 1254-treatment caused a 4.2-fold induction of GSH S-transferase in NFS/NCR but only a 1.4-fold increase in AKR/NCR mice. Aroclor 1254 significantly induced GSH reductase in all strains studied while GSH peroxidase activity decreased in these mice. 4. The range of hepatic GSH levels in control and Aroclor 1254-treated mice was relatively narrow for both groups (6.59-11.25 microM/g wet tissue).  相似文献   

5.
Polychlorinated biphenyls (PCBs) are a group of persistent organochlorine compounds that have the potential to disrupt the homeostasis of thyroid hormones (THs) in fish, particularly juveniles. In this study, thyroid histology, plasma TH levels, and iodothyronine deiodinase (IDs, including ID1, ID2, and ID3) gene expression patterns were examined in juvenile Japanese flounder (Paralichthys olivaceus) following 25- and 50- day waterborne exposure to environmentally relevant concentrations of a commercial PCB mixture, Aroclor 1254 (10, 100, and 1000 ng/L) with two-thirds of the test solutions renewed daily. The results showed that exposure to Aroclor 1254 for 50 d increased follicular cell height, colloid depletion, and hyperplasia. In particular, hypothyroidism, which was induced by the administration of 1000 ng/L Aroclor 1254, significantly decreased plasma TT4, TT3, and FT3 levels. Profiles of the changes in mRNA expression levels of IDs were observed in the liver and kidney after 25 and 50 d PCB exposure, which might be associated with a reduction in plasma THs levels. The expression level of ID2 mRNA in the liver exhibited a dose-dependent increase, indicating that this ID isotype might serve as sensitive and stable indicator for thyroid-disrupting chemical (TDC) exposure. Overall, our study confirmed that environmentally relevant concentrations of Aroclor 1254 cause significant thyroid disruption, with juvenile Japanese flounder being suitable candidates for use in TDC studies.  相似文献   

6.
Adult tilapia were exposed to 0 (control) and 4.45 microM Cd for 0 h, 5 h, 5 days, and 15 days, and the physiological responses of fish were described. The physiological responses were first expressed in gill tissue, in which mucus cells secretion increased, Cd accumulated, cortisol secretion was significantly higher, but serum ACH(50) activity (alternative complement hemolytic assay) was significantly lower than in controlled fish. After 5 days of Cd exposure, the ACH(50) activity showed a greater decrease, but lysozyme and cortisol contents showed significant increases over the control. Cd levels significantly increased in intestines, liver, and kidneys, and a significant induction of metallothionein (MT) protein in hepatic tissue was noted. Finally, the Cd accumulation rate still showed significant increases in these organs. However, the MT content was similar at 5 days and at 15 days after Cd exposure, and the cortisol contents had recovered to the pre-exposure level. In addition, Cd accumulation in muscle was higher after Cd exposure than in controls (t-test, p<0.05). Our results demonstrate (1) that tilapia readily regulate their physiological parameters in order to acclimate to a sublethal Cd environment; (2) these changes of physiological parameters may be related with a succession of cortisol levels following Cd exposure; (3) increasing rate of hepatic MT contents and Cd accumulation rate didn't appear identical after 5-15 days of Cd exposure. This was confirmed that hepatic MT was not a good indicator for Cd levels in tilapia.  相似文献   

7.
PCB153, one of the 3 dominant congeners in the food chain, causes the disruption of the endocrine system in humans and animals. In order to elucidate the effects of PCB153 on the biosynthesis, biotransformation, regulation, metabolism, and transport of thyroid hormones (THs), Sprague-Dawley (SD) rats were dosed with PCB153 intraperitoneally (i.p.) at 0, 4, 16 and 32 mg/kg/day for 5 consecutive days and sacrificed 24 h after the last dose. Results showed that after treatment with PCB153, serum total thyroxine (TT4), total triiodothyronine (TT3), and thyrotropin releasing hormone (TRH) decreased, whereas serum thyroid stimulating hormone (TSH) concentration did not alter. The serum sodium iodide symporter (NIS), thyroid peroxidase (TPO), and thyroglobulin (Tg) levels decreased. The mRNA expressions of type 2 and 3 deiodinases (D2 and D3) reduced, but the type 1 deiodinase (D1) showed no significant change. The TSH receptor (TSHr) and TRH receptor (TRHr) levels declined. PCB153 induced hepatic enzymes, and the UDPGTs, CYP2B1, and CYP3A1 mRNA levels were significantly elevated. Taken together, the observed results from the present study indicated that PCB153 disrupted thyroid hormone homeostasis through influencing synthesis-associated proteins (NIS, TPO and Tg), deiodinases, receptors (TSHr and TRHr), and hepatic enzymes, and the decrease of D3 expression might be the compensatory response of body.  相似文献   

8.
The majority of the previous studies of thyroid abnormalities in bipolar patients was conducted in populations containing various proportions of lithium-treated subjects. In the present study, we sought to determine whether there exist differences in hypothyroid profile between lithium-free and -treated bipolar patients. Bipolar patients never treated with lithium and carbamazepine (n=78) and those currently in lithium therapy (n=53) were included in this study. Serum concentrations of total thyroxine (T(4)), total triiodothyronine (T(3)), and thyroid-stimulating hormone (TSH) were compared between lithium-free and -treated patients. The rate of hypothyroidism in lithium-free patients was significantly lower than those treated with lithium (6.3%-10.8% vs. 28.0%-32.1%). Significant changes in the three thyroid indices indicative of hypothyroidism were consistently associated with longer illness duration in lithium-free manic patients, but with greater severity of mania and more mood episodes in their lithium-treated counterparts. In lithium-free depressed patients, more episodes were associated with lower T(4) levels; whereas in their lithium-treated counterparts, longer illness duration was associated with higher TSH levels and females with lower T(3) levels. These results suggest that bipolar patients with and without lithium exposure differ in prevalence and association of hypothyroidism and may have different response to thyroid hormone therapy.  相似文献   

9.
Thyroid function ultimately depends on appropriate iodine supply to the gland. There is a complex series of checks and balances that the thyroid uses to control the orderly utilization of iodine for hormone synthesis. The aim of our study is to evaluate the mechanism underlying the effect of iodine excess on thyroid hormone metabolism. Based on the successful establishment of animal models of normal-iodine (NI) and different degrees of high-iodine (HI) intake in Wistar rats, the content of monoiodotyrosine (MIT), diiodotyrosine (DIT), T4, and T3 in thyroid tissues, the activity of thyroidal type 1 deiodinase (D1) and its (Dio1) mRNA expression level were measured. Results showed that, in the case of iodine excess, the biosynthesis of both MIT and DIT, especially DIT, was increased. There was an obvious tendency of decreasing in MIT/DIT ratio with increased doses of iodine intake. In addition, iodine excess greatly inhibited thyroidal D1 activity and mRNA expression. T3 was greatly lower in the HI group, while there was no significant difference of T4 compared with NI group. The T3/T4 ratio was decreased in HI groups, antiparalleled with increased doses of iodine intakes. In conclusion, the increased biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio1 mRNA expression and D1 activity may be taken as an effective way to protect an organism from impairment caused by too much T3. These observations provide new insights into the cellular regulation mechanism of thyroid hormones under physiological and pathological conditions.  相似文献   

10.
The effects of supplementing selenium on thyroid hormone metabolism were studied on mice with excessive iodine exposure. The serum concentrations of thyroxine (T4) and triiodothyronine (T3) and the activities of iodothyronine 5′ and 5-deiodinase (D2, D3) were measured in the brain of filial mice to study the influence of selenium on thyroid hormone metabolism. Measurements were carried out on postnatal day 0, 14, and 28. It was found that selenium supplementation alleviated the adverse effects of excessive iodine on progeny. The serum TT4 level as well as TT4 and TT3 concentrations and D3 activity in cerebrum of progeny decreased, whereas D2 activity increased in the cerebrum of progeny on postnatal day 0 and 14. Selenium supplementation exerted some favorable effects on thyroid hormone metabolism in cerebrum of progeny of dam with excessive iodine intake.  相似文献   

11.
12.
Polychlorinated biphenyls (PCBs) are worldwide pollutants and have caused hazardous effects on many animal species including humans. They have been detected in human milk and therefore exposure of newborns to PCBs is unavoidable if they are breast-fed. We present our findings on two experiments performed to test the effects of intermittent and continuous exposure of lactating rats to two different doses (80 microg and 8 microg) of Aroclor 1242 (a PCB congener) on testicular steroidogenic function of their adult male offspring. In experiment I, three groups of lactating dams received daily subcutaneous (SC) injections of either corn oil, 80 microg of Aroclor 1242 and 8 microg of Aroclor 1242 in corn oil, respectively. In experiment II, three groups of lactating dams received two SC injections per week of either corn oil or Aroclor 1242 (80 microg and 8 microg) in corn oil, respectively. Pups in all groups (n=8 per group) were weaned at day 21 and were raised on a normal diet until sacrificed at 90 days. Experiment I: Leydig cell number per testis was significantly (P<0.05) increased and the average volume of a Leydig cell was significantly (P<0.05) reduced in both groups of Aroclor-exposed rats compared to corn oil controls. Both doses of Aroclor resulted in reduced (P<0.05) serum testosterone levels compared to corn oil-treated controls. LH-stimulated testosterone production per testis and per Leydig cell was lower in Aroclor-exposed rats compared to controls. Experiment II: No changes were observed in Leydig cell size and number per testis among the three groups. Serum LH, testosterone and LH-stimulated testicular testosterone production in offspring rats of Aroclor-treated dams were not significantly different (P>.05) from the offspring of corn oil-treated dams. However, these parameters were lower in value in the offspring of dams treated with Aroclor 80 microg compared to the other two groups. LH-stimulated testosterone secretory capacity per Leydig cell was significantly lower in offspring of dams treated with Aroclor compared to controls. Serum T4 and T3 levels were not significantly different among the Aroclor-exposed and control rats in both experiments. These results demonstrate that continuous exposure of lactating mothers to 8 and 80 microg of Aroclor 1242 causes hypotrophy and malfunctioning of Leydig cells in the adult male offspring resulting in a hypoandrogenic status. Intermittent treatment of lactating mothers with 80 microg of Aroclor (but not with 8 microg of Aroclor) also produced malfunctioning of Leydig cells and a hypoandrogenic status in the absence of Leydig cell hypotrophy. However, the Aroclor 8 microg dose was ineffective to produce the above effects.  相似文献   

13.
Cadmium (Cd), lead (Pb), and selenium (Se) concentrations in cord whole blood, sampled from 24 women at the time of delivery in a hospital in Tokyo in 2005, were determined by inductively coupled plasma mass spectrometry with a reaction cell. Signal enhancement caused by nonspectroscopic interference for Se was evident and the standard addition technique was essential for correcting the interference. Median concentration in cord bloods was 0.20 ng/g, 6.7 ng/g (0.67 μg/dL), and 191 ng/g for Cd, Pb and Se, respectively. Lead concentration was lower, whereas Se concentration was higher, than those reported in other countries. The trace element concentration was related to the levels of thyroid stimulating hormone (TSH) and free thyroxin (fT4) in the neonatal blood sampled at 4–6 days postpartum. A significantly negative correlation was observed between Cd concentrations in cord blood and TSH concentration in neonatal blood. The result indicated the possible effect of in utero Cd exposure on thyroid hormone status of newborns and that Cd exposure level should be assessed as a covariate in the survey on the relationship between in utero chemicals (e.g., PCBs) exposure and thyroid hormone status.  相似文献   

14.
We investigated variables related to thyroid, vitamin A and calcitriol homeostasis, immune function and tumour development in ringed seals (Phoca hispida) from the polluted Baltic Sea and a less polluted reference location at Svalbard, Norway. We also examined the relationships between the biological variables and the concentrations of persistent organic pollutants (POPs) and their hydroxylated (OH) metabolites. Our data show higher plasma concentrations of free triiodothyronine (T3), and ratios of free and total T3 in Baltic seals as compared to Svalbard seals. Baltic seals had also higher hepatic mRNA expressions of deiodinase-I, thyroid hormone receptor β, retinoic acid receptor α, growth hormone receptor and interleukin-1β compared to Svalbard seals. Levels of plasma retinol were lower in the Baltic seals as compared to Svalbard seals. No geographical difference was observed for other thyroid hormone levels and hepatic retinoid levels. Ratios of free and total T3 were positively correlated to OH-POPs in plasma. The results of the present study suggest that endocrine homeostasis may be affected by contaminant and metabolite exposure in the Baltic ringed seals with respect to circulating hormones and retinol and hepatic mRNA expressions. In addition, OH-POPs may putatively produce the disruption of thyroid hormone transport in plasma.  相似文献   

15.
系统研究了我国本土两栖动物种黑斑蛙(Rana nigromaculata)变态发育过程中甲状腺组织学和甲状腺激素水平的变化,为甲状腺生物学和甲状腺干扰研究提供基础数据。黑斑蛙蝌蚪发育的形态变化: 第26-40阶段,后腿芽生长并逐渐分化出五趾结构;42阶段,开始进入变态高峰期,前肢展开,尾吸收,蝌蚪身体发生巨大形变;46阶段,蝌蚪完全变态成小蛙。随着形态学的变化,甲状腺的组织结构也发生明显的变化: 26-37阶段,甲状腺体积较小,增长缓慢;38阶段甲状腺体积迅速膨大,进入高峰期,甲状腺的发育达到顶峰;随着变态完成,甲状腺又逐渐缩小。甲状腺组织学变化的同时,甲状腺激素水平也相应发生变化: 在变态前期,下颌中3,3',5-三碘代-L-甲腺原氨酸(T3)水平增长缓慢,进入变态期后,T3含量迅速升高,在变态高峰期达到峰值,随后下降。以上结果表明,黑斑蛙发育过程中甲状腺组织学的变化与甲状腺激素水平的波动相吻合。对黑斑蛙甲状腺系统的研究,可为日后使用黑斑蛙开展甲状腺干扰作用的研究提供基础。    相似文献   

16.
To elucidate the role of type III iodothyronine 5-deiodinase (5-D) in the temporal regulation of amphibian metamorphosis, the regulation of gene expression of 5-D and thyroid hormone receptor beta (TRbeta) in organs of Xenopus laevis was investigated. High levels of TRbeta mRNA in the respective organs were observed at the times of their major morphological changes. Expression of the 5-D gene was highly regulated among the organs during metamorphosis, including up-regulation in the tail and down-regulation in the liver. The tail and liver expressed 5-D gene before their metamorphic changes. These precocious expressions correlated with the lower responsiveness to exogenously added triiodo-L-thyronine (T3) for inducing a high level of TRbeta mRNA expression. However, the same organs responded to lower doses of T3 to regulate 5-D gene expression as seen in spontaneous metamorphosis. The induction of 5-D gene expression was considerably delayed in the intestine, even at an excess dose of T3. Thus, the two genes in a given organ appeared to respond to T3 either with different dose dependencies or with different timetables. The results obtained are also discussed in respect to recent findings in Rana catesbeiana.  相似文献   

17.

Background

Thyroid hormone signaling is critical for development, growth and metabolic control in vertebrates. Although serum concentration of thyroid hormone is remarkable stable, deiodinases modulate thyroid hormone signaling on a time- and cell-specific fashion by controlling the activation and inactivation of thyroid hormone.

Scope of the review

This review covers the recent advances in D2 biology, a member of the iodothyronine deiodinase family, thioredoxin fold‐containing selenoenzymes that modify thyroid hormone signaling in a time- and cell-specific manner.

Major conclusions

D2-catalyzed T3 production increases thyroid hormone signaling whereas blocking D2 activity or disruption of the Dio2 gene leads to a state of localized hypothyroidism. D2 expression is regulated by different developmental, metabolic or environmental cues such as the hedgehog pathway, the adrenergic- and the TGR5-activated cAMP pathway, by xenobiotic molecules such as flavonols and by stress in the endoplasmic reticulum, which specifically reduces de novo synthesis of D2 via an eIF2a-mediated mechanism. Thus, D2 plays a central role in important physiological processes such as determining T3 content in developing tissues and in the adult brain, and promoting adaptive thermogenesis in brown adipose tissue. Notably, D2 is critical in the T4-mediated negative feed-back at the pituitary and hypothalamic levels, whereby T4 inhibits TSH and TRH expression, respectively. Notably, ubiquitination is a major step in the control of D2 activity, whereby T4 binding to and/or T4 catalysis triggers D2 inactivation by ubiquitination that is mediated by the E3 ubiquitin ligases WSB-1 and/or TEB4. Ubiquitinated D2 can be either targeted to proteasomal degradation or reactivated by deubiquitination, a process that is mediated by the deubiquitinases USP20/33 and is important in adaptive thermogenesis.

General significance

Here we review the recent advances in the understanding of D2 biology focusing on the mechanisms that regulate its expression and their biological significance in metabolically relevant tissues. This article is part of a Special Issue entitled Thyroid hormone signalling.  相似文献   

18.
19.
Three weeks after a single dose of iron-dextran and Aroclor 1254, mice maintained continuously on delta-aminolevulinic acid supplemented drinking water showed significantly elevated levels of hepatic uroporphyrin and depressed (25% of normal) uroporphyrinogen decarboxylase (URO-D) activity. Depressed URO-D activity was paralleled by the ability of heat denatured cytosol to inhibit rhURO-D activity. Mice heterozygous for a targeted disruption at the URO-D locus (URO-D+/-) exhibited half the URO-D activity of homozygous controls prior to treatment. After treatment, these animals showed URO-D activity and rhURO-D inhibitory activity comparable to similarly treated wild type (URO-D +/+) mice but with significantly greater uroporphyrin accumulation. With only 10 days of treatment, URO-D +/- but not URO-D +/+ mice showed changes similar in magnitude to those seen after 21 days. Prior to treatment, URO-D genotype did not influence overall hepatic P450 concentration in either sex and there was no significant difference between sexes. The treatment regimen significantly elevated P450 in animals of either URO-D genotype and in both sexes, although the induction response at the 10-day point was attenuated in URO-D +/- mice. From differences in the CO absorbance maximum, and by P450 activity analysis, this attenuated induction response resulted from an attenuation of the CYP2B not the CYP1A induction.  相似文献   

20.
We designed three experiments to determine both the optimal dose of and time on experiment for methimazole (MMI; 1-methyl-2-mercaptimidazole). Our goals were to determine if chicken growth was related to thyroid hormone levels and if intermediary metabolism changed along with changes in thyroid hormone levels. Initiating MMI at one week of age decreased (P<0.01) plasma thyroid levels and growth in four-week old birds. In contrast, initiating MMI at two and three weeks of age decreased (P<0.05) hormone levels without affecting growth as severely. Although initiating MMI at two weeks of age depressed (P<0.05) plasma thyroid hormones at four weeks, there was little change in vitro lipogenesis at four weeks. Again, initiating MMI at one week of age decreased body weight, plasma thyroid hormones and in vitro lipogenesis at four weeks of age. In addition, this treatment also decreased (P<0.05) malic enzyme activity at this same age period. The second experiment showed that MMI, initiated at 14 days, had no significant effect on 28-day body weight and again decreased both plasma T(3) and T(4) but T(3) replacement increased plasma T(3) in both 14-28-day treatment groups. All body weights were similar at 30 days, however. Lastly, diets containing graded levels of MMI decreased thyroid hormones and body weight (0>0.25>0.5>1 g MMI/kg). In contrast, only the two higher levels (0.5 and 1 g MMI/kg) decreased in vitro lipogenesis. Growth depression, caused by MMI feeding, can occur without changes in lipid metabolism. The length of MMI administration may be as important as dose level in obtaining effects (growth, thyroid hormone depression and inhibition of lipogenesis).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号