首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant Golgi apparatus is composed of many separate stacks of cisternae which are often associated with the endoplasmic reticulum and which in many cell types are motile. In this review, we discuss the latest data on the molecular regulation of Golgi function. The concept of the Golgi as a distinct organelle is challenged and the possibility of a continuum between the endoplasmic reticulum and Golgi is proposed.  相似文献   

2.
The addition of sialic acid to glycoproteins and glycolipids requires Golgi sialyltransferases to have access to their glycoconjugate substrates and nucleotide sugar donor, CMP-sialic acid. CMP-sialic acid is transported into the lumen of the Golgi complex through the CMP-sialic acid transporter, an antiporter that also functions to transport CMP into the cytosol. We localized the transporter using immunofluorescence and deconvolution microscopy to test the prediction that it is broadly distributed across the Golgi stack to serve the many sialyltransferases involved in glycoconjugate sialylation. The transporter co-localized with ST6GalI in the medial and trans Golgi, showed partial overlap with a medial Golgi marker and little overlap with early Golgi or trans Golgi network markers. Endoplasmic reticulum-retained forms of sialyltransferases did not redistribute the transporter from the Golgi to the endoplasmic reticulum, suggesting that transporter-sialyltransferase complexes are not involved in transporter localization. Next we evaluated the role of the transporter's N- and C-terminal cytoplasmic tails in its trafficking and localization. The N-tail was not required for either endoplasmic reticulum export or Golgi localization. The C-tail was required for endoplasmic reticulum export and contained di-Ile and terminal Val motifs at its very C terminus that function as independent endoplasmic reticulum export signals. Deletion of the last four amino acids of the C-tail (IIGV) eliminated these export signals and prevented endoplasmic reticulum export of the transporter. This form of the transporter supplied limited amounts of CMP-sialic acid to Golgi sialyltransferases but was unable to completely rescue the transporter defect of Lec2 Chinese hamster ovary cells.  相似文献   

3.
The mature pollen grain of Papaver rhoeas is bicellular. The vegetative cell contains numerous mitochondria; endoplasmic reticulum is not very extensive and there are few ribosomes and plastids. Golgi bodies are in a very active state. The generative cell is lobed and spindle-shaped. The cytoplasm contains many, generally longitudinally arranged, bundles of microtubules. Other organelles are few in number, and include mitochondria, Golgi bodies and short cisternae of endoplasmic reticulum.  相似文献   

4.
The ultrastructure of the parathyroid chief cell in the woodchuck, Marmota monax, was studied during the four seasons of the year. Spring chief cells have stacks of granular endoplasmic reticulum, prominent multiple Golgi zones and many clumped mitochondria. Summer cells resemble those seen in the spring but the mitochondria are associated with stacks of granular endoplasmic reticulum. Multiple areas of stacked granular endoplasmic reticulum characterize the fall chief cells. Their Golgi zones are large and are associated with many dense core secretory granules. Lipoid vacuoles are frequently noted. Winter chief cells have secretory granules and phagolysosomes (dense bodies). Some of these cells contain stacked arrays of granular endoplasmic reticulum associated with mitochondria, others have only short segments. The above morphological findings are discussed in relation to those in other hibernators, the parafollicular (C) cell, and to the cyclic seasonal activities of the woodchuck.  相似文献   

5.
Summary The electron microscopical localization of acid phosphatase activity was investigated in ultra-thin and semi-thin sections of unvacuolated notochordal cells of chick embryos from stages 9 to 14 (as defined by Hamburger & Hamilton). At stage 9, many notochordal cells show a lightly positive reaction for acid phosphatase activity. Thereafter, the acid phosphatase-positive cells of the notochord increase in number and, at stage 14, the reaction products for the enzyme are distributed throughout almost all the cisternae of the nuclear envelope and a well-differentiated endoplasmic reticulum, the parallel cisternal and reticular parts of the Golgi complex, and various lysosomes in nearly all notochordal cells. In the cisternae of the nuclear envelope and endoplasmic reticulum, the acid phosphatase reaction products are in a fine granular form. In the outermost layer of the cisternal parts of the Golgi complex, faint lead deposits similar to those in the endoplasmic reticulum are found, but in other cisternal and reticular regions which may correspond to the GERL, considerable amounts of reaction products are present. Knob-like projections are also seen protruding from the reticular parts of the Golgi complex. These results suggest that, at least up to stage 14, the notochordal cells are actively synthesizing acid phosphatase which is directly transported from the endoplasmic reticulum to the Golgi complex. The enzyme may be accumulated by the Golgi complex from which primary lysosomes are formed. Furthermore, the pattern of the ultrastructural localization of acid phosphatase activity in embryonic notochordal cells of the chick differs from that of adult cells of other animals.  相似文献   

6.
Summary Interstitial cells of hydra are small undifferentiated cells containing an abundance of free ribosomes and few other cytoplasmic organelles. They are capable of differentiating into epitheliomuscular, digestive, glandular, nerve cells, and cnidoblasts. Developing epitheliomuscular and digestive cells acquire bundles of filaments, 50 Å in diameter, which later are incorporated into the muscular processes. Early gland cells develop an elaborate rough-surfaced endoplasmic reticulum and one or more Golgi apparatus. Secretory granules originate in the Golgi region eventually filling the apex of the cell. Neurons are recognized first by the presence of an elaborate Golgi apparatus, absence of a well-developed endoplasmic reticulum, and later the appearance of cytoplasmic processes. The most striking feature of nematocyst formation by cnidoblasts is the presence of a complex distribution system between protein synthesizing rough-surfaced endoplasmic reticulum and the nematocyst. This system consists of connections between cisternae of the endoplasmic reticulum with smooth Golgi vesicles which in turn are connected to minute tubules, 200 Å in diameter. The tubules extend from the Golgi region around the nematocyst finally entering the limiting membrane of the nematocyst. It is suggested that the interstitial cells of hydra represent a model system for the investigation of many aspects of cell differentiation.This work was supported by grants from the National Cancer Institute (TlCA-5055) and from the National Institute of Arthritis and Metabolic Diseases (AM-03688), National Institutes of Health, Department of Health, Education and Welfare.The author is indebted to Dr. Russell J. Barrnett for his guidance and interest throughout this investigation.  相似文献   

7.
Immunoreaction of alpha-fetoprotein (AFP) has been described in cholangiolar "oval" cells in the early stage of 3'-methyl-4-dimethylaminoazobenzene hepatocarcinogenesis. The subcellular location of AFP in the oval cells was in the perinuclear space, rough endoplasmic reticulum and Golgi apparatus. In livers with hyperplastic nodules there were two different types of foci containing AFP-positive cells. One type had a normal nucleocytoplasmic ratio and was seen in well-preserved hepatic trabecular structures, and the other had less cytoplasm and occurred in trabecular structures in disarray. AFP-immunoreactivity in the former type was visible in the perinuclear space and rough endoplasmic reticulum but scarce in the Golgi apparatus, and in the latter type it was present in the proliferative smooth endoplasmic reticulum and in several parts of Golgi apparatus in the submembranous or pericanalicular areas. In livers with hepatocarcinoma, AFP immunoreaction was detected in well-differentiated hepatocellular carcinomas, and the subcellular location of AFP was in the perinuclear space, rough endoplasmic reticulum and many developed Golgi complexes. Therefore, AFP-positive cells in livers with hyperplastic nodules are a new cell population in hepatocarcinogenesis, and each type is morphologically different from the oval cell.  相似文献   

8.
D.A. Brodie 《Tissue & cell》1982,14(2):263-271
Exposure of insect fat body to treatments which disrupt microtubules (colchicine, vinblastine sulfate and cold treatment) blocks intracellular transport between the Golgi complex and the plasma membrane but does not affect Golgi complex bead rings or transport from rough endoplasmic reticulum to the Golgi complex. Drugs which disrupt microfilaments (cytochalasins B and D) do not affect the bead rings or intracellular transport of secretory proteins at any level. Thus, intracellular transport between the rough endoplasmic reticulum and the Golgi complex and the arrangement of the beads in rings are both independent of the cytoskeleton. The ring arrangement is presumably maintained by interconnection(s) with rough endoplasmic reticulum membrane.  相似文献   

9.
The trans Golgi face in rat small intestinal absorptive cells   总被引:1,自引:0,他引:1  
In the small intestine cell differentiation from immature crypt cells to mature absorptive cells localized along the villi is accompanied by alterations in the organization of the trans Golgi side. In immature crypt cells the transmost Golgi cisterna is usually located closely adjacent to the other cisternae thus being a component of the stack. Concomitantly with cell differentiation the transmost cisterna of an increasing number of Golgi stacks sets off from the other cisternae being then located at various distances to the stacks. This transmost cisterna has, as in several other cell types, been interpreted as "GERL" (Golgi associated endoplasmic reticulum lysosomes [20, 28]) and thus, has been postulated to represent a specialized region of the endoplasmic reticulum. Our results, however, have shown that the cytochemical staining pattern which has been used as a basis for the differentiation of GERL from Golgi components is not present in crypt cells nor in mature absorptive cells of the proximal small intestine: identical cisternae react for thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. Thiamine pyrophosphatase and inosine diphosphatase--enzymes characteristic for Golgi cisternae--are apparent over transmost cisternae defined as GERL, too, and in addition, acid phosphatase--postulated as GERL-marker--is demonstrable over stacked Golgi cisternae. This overlapping cytochemical reaction, as well as the alterations during cell differentiation, indicate that those structures which have been described as GERL are to be interpreted as Golgi components rather than as endoplasmic reticulum. On the other hand, endoplasmic reticulum is a constant component of the trans Golgi face in undifferentiated crypt-base cells and in maturing cells of the crypt-top region. From its localization closely adjacent to trans Golgi cisternae it may be termed "Golgi-associated endoplasmic reticulum"; however, these cisternae of endoplasmic reticulum are constantly devoid of acid phosphatase. No indications exist for continuities with the thiamine pyrophosphatase-, inosine diphosphatase-, and acid phosphatase-positive transmost Golgi cisternae, and for an engagement in production of lysosomes.  相似文献   

10.
The tubular accessory reproductive glands of the male mealworm beetle consist of a secretory epithelium surrounded by a thin muscular sheath. Each columnar secretory cell is divisible into three zones: basal which is adjacent to the muscle layer and contains rough endoplasmic reticulum and Golgi, intermediate, which contains endoplasmic reticulum and Golgi zones in the immature gland and is filled with secretory vesicles in the mature gland, and apical. Maturation also involves proliferation and organization of the rough endoplasmic reticulum in the basal and intermediate zone. The process appears to be complete at four days after ecdysis. Parallels with other insect glands and with the mammalian prostate are striking.  相似文献   

11.
Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver   总被引:24,自引:0,他引:24  
An alpha-mannosidase activity has been identified in a preparation of rat liver endoplasmic reticulum and shown to be distinct from the previously described Golgi alpha-mannosidases I and II and the lysosomal alpha-mannosidase. The enzyme was solubilized with deoxycholate and separated from other alpha-mannosidases by passage over concanavalin A-Sepharose to which it does not bind. The endoplasmic reticulum alpha-mannosidase cleaves alpha-1,2-linked mannoses from high mannose oligosaccharides and, unlike Golgi alpha-mannosidase I, is active against p-nitrophenyl-alpha-D-mannoside (Km = 0.17 mM). It has no activity toward GlcNAc-Man5GlcNAc2 peptide, the specific substrate of the Golgi alpha-mannosidase II. The endoplasmic reticulum alpha-mannosidase activity toward p-nitrophenyl-alpha-D-mannoside is relatively insensitive to swainsonine, an inhibitor of both the lysosomal alpha-mannosidase and Golgi alpha-mannosidase II. We propose that the endoplasmic reticulum alpha-mannosidase is responsible for the removal of mannose residues from asparagine-linked high mannose type oligosaccharides prior to their entry into the Golgi.  相似文献   

12.
UDP-galactose reaches the Golgi lumen through the UDP-galactose transporter (UGT) and is used for the galactosylation of proteins and lipids. Ceramides and diglycerides are galactosylated within the endoplasmic reticulum by the UDP-galactose:ceramide galactosyltransferase. It is not known how UDP-galactose is transported from the cytosol into the endoplasmic reticulum. We transfected ceramide galactosyltransferase cDNA into CHOlec8 cells, which have a defective UGT and no endogenous ceramide galactosyltransferase. Cotransfection with the human UGT1 greatly stimulated synthesis of lactosylceramide in the Golgi and of galactosylceramide in the endoplasmic reticulum. UDP-galactose was directly imported into the endoplasmic reticulum because transfection with UGT significantly enhanced synthesis of galactosylceramide in endoplasmic reticulum membranes. Subcellular fractionation and double label immunofluorescence microscopy showed that a sizeable fraction of ectopically expressed UGT and ceramide galactosyltransferase resided in the endoplasmic reticulum of CHOlec8 cells. The same was observed when UGT was expressed in human intestinal cells that have an endogenous ceramide galactosyltransferase. In contrast, in CHOlec8 singly transfected with UGT 1, the transporter localized exclusively to the Golgi complex. UGT and ceramide galactosyltransferase were entirely detergent soluble and form a complex because they could be coimmunoprecipitated. We conclude that the ceramide galactosyltransferase ensures a supply of UDP-galactose in the endoplasmic reticulum lumen by retaining UGT in a molecular complex.  相似文献   

13.
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism  相似文献   

14.
Using light and electron microscopy, three hemocyte types are described in the hemolymph of the crayfish. The coagulocyte comprises 65% of the total hemocyte number and contains medium-sized cytoplasmic granules, abundant dilated rough endoplasmic reticulum, and a highly developed Golgi complex. It rapidly undergoes cytolysis in vitro and participates in coagulation by releasing the contents of its granules to the hemolymph. The granulocyte comprises 31% of the total hemocyte number and is capable of phagocytosis. It contains large, irregularly shaped cytoplasmic granules, a moderately developed Golgi complex, and moderate amounts of non-dilated rough endoplasmic reticulum. During coagulation in vitro, the cell attaches and spreads onto the substratum; this is followed by a slow intracellular granule breakdown and cytolysis. The amebocyte comprises 4% of the total hemocyte number and it is also capable of phagocytosis. It possesses small cytoplasmic granules, many vacuoles, a moderately developed Golgi complex, and large amounts of smooth endoplasmic reticulum. It is distinguished from the other two cell types by being stable and motile in vitro.  相似文献   

15.
1. The galactosylhydroxylysylglucosyltransferase (GGT) specific to collagen is located in the RER (rough endoplasmic reticulum), SER (smooth endoplasmic reticulum) and Golgi apparatus for the chick embryo liver. 2. The UDP-glucose collagen glucosyltransferase activities in chick embryo liver were solubilized by Nonidet P-40. 3. The mechanism of collagen glucosyltransferase reaction was studied with enzyme preparation of Golgi apparatus CF2, smooth endoplasmic reticulum CF4 and rough endoplasmic reticulum CF8. 4. For the three fractions, data obtained in experiments were consistent with a sequential ordered mechanism in which the substrates are bound to the enzyme in the following order: Mn2+, collagen and UDP-glucose substrate, with different values for Km and Vmax.  相似文献   

16.
Asparagine-linked oligosaccharides of glycoproteins are subject to a series of trimming reactions by glucosidases and mannosidases in the endoplasmic reticulum which result in the removal of all three glucose residues and several of the nine mannose residues. At present, endomannosidase represents the only processing enzyme which cleaves internally and provides an alternate deglucosylation pathway. However, in contrast to the endoplasmic reticulum residential proteins glucosidase I and II, endomannosidase is primarily situated in the Golgi apparatus of rat liver hepatocytes and hepatocyte cell lines. We have performed a confocal immunohistochemical study to investigate endomannosidase in various rat tissues and used a monoclonal antibody against Golgi mannosidase II as a marker for the Golgi apparatus. Although immunofluorescence for both endomannosidase and Golgi mannosidase II was detectable in the epithelia of many tissues, renal proximal tubular cells, cortex and medulla of adrenal gland, gastric mucosa, and Leydig cells of testis were unreactive for endomannosidase. Furthermore, the endothelia in all studied tissues were unreactive for endomannosidase but positive for Golgi mannosidase II. It is concluded that by immunohistochemistry endomannosidase exhibits a cell type-specific expression in rat tissues.  相似文献   

17.
Eukaryotic cells use a variety of strategies to inherit the Golgi apparatus. During vertebrate mitosis, the Golgi reorganizes dramatically in a process that seems to be driven by the reversible fragmentation of existing Golgi structures and the temporary redistribution of Golgi components to the endoplasmic reticulum. Several proteins that participate in vertebrate Golgi inheritance have been identified, but their detailed functions remain unknown. A comparison between vertebrates and other eukaryotes reveals common mechanisms of Golgi inheritance. In many cell types, Golgi stacks undergo fission early in mitosis. Some cells exhibit a further Golgi breakdown that is probably due to a mitotic inhibition of membrane traffic. In all eukaryotes examined, Golgi inheritance involves either the partitioning of pre-existing Golgi elements between the daughter cells or the emergence of new Golgi structures from the endoplasmic reticulum, or some combination of these two pathways.  相似文献   

18.
Summary Membrane-bounded organelles possessing cisternae, i.e., rough endoplasmic reticulum and Golgi apparatus, in immature rat central neurons were examined by quick-freeze and deep-etch techniques to see how their intracisternal structures are organized and how ribosomes are associated with the membrane of the endoplasmic reticulum. Cisternae of endoplasmic reticulum, 60–100 nm wide, were bridged with randomly-distributed strands (trabecular strands, 12.5 nm in mean diameter). Luminal surfaces of cisternae of the endoplasmic reticulum were decorated with various-sized globular particles, some as small as intramembrane particles, and others as large as granules formed by soluble proteins seen in the cytoplasm. A closer examination revealed much thinner strands (3.3. nm in mean diameter). Such thin strands were short, usually winding toward the luminal surface, and sometimes touching the luminal surface with one end. Ribosomes appeared to be embedded into the entire thickness of cross-fractured membranes of endoplasmic reticulum, that is, their internal portions appeared to be situated at almost the same level as the cisternal luminal surface. From the internal portion of ribosomes, single thin strands occasionally protruded into the lumen, suggesting that these thin strands were newly synthesized polypeptides. A horizontal separation within ribosomes appeared to occur at the same level as the hydrophobic middle of the membrane of the endoplasmic reticulum. Interiors of the Golgi apparatus cisternae, which were much narrower than cisternae of endoplasmic reticulum, were similarly bridged with trabecular strands, but the Golgi trabecular strands were thinner and more frequent. Their cisternal lumina were also dotted with globular particles. No identifiable profiles corresponding to the thin strands in the endoplasmic reticulum were observed. Golgi cisternae showed a heterogeneous distribution of membrane granularity; the membrane in narrow cisternal space was granule-rich, while that in expanded space was granule-poor, suggesting a functional compartmentalization of the Golgi cisternae.  相似文献   

19.
Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.  相似文献   

20.
Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号