首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mammalian urogenital sinus (UGS) develops in a sex specific manner, giving rise to the prostate in the male and the sinus vagina in the embryonic female. Androgens, produced by the embryonic testis, have been shown to be crucial to this process. In this study we show that retinoic acid signaling is required for the initial stages of bud development from the male UGS. Enzymes involved in retinoic acid synthesis are expressed in the UGS mesenchyme in a sex specific manner and addition of ligand to female tissue is able to induce prostate-like bud formation in the absence of androgens, albeit at reduced potency. Functional studies in mouse organ cultures that faithfully reproduce the initiation of prostate development indicate that one of the roles of retinoic acid signaling in the male is to inhibit the expression of Inhba, which encodes the βA subunit of Activin, in the UGS mesenchyme. Through in vivo genetic analysis and culture studies we show that inhibition of Activin signaling in the female UGS leads to a similar phenotype to that of retinoic acid treatment, namely bud formation in the absence of androgens. Our data also reveals that both androgens and retinoic acid have extra independent roles to that of repressing Activin signaling in the development of the prostate during fetal stages. This study identifies a novel role for retinoic acid as a mesenchymal factor that acts together with androgens to determine the position and initiation of bud development in the male UGS epithelia.  相似文献   

3.
4.
Morphogens in chick limb development   总被引:4,自引:0,他引:4  
Retinoic acid is a good candidate for a morphogen in chick limb bud development. The challenge now is to determine how retinoic acid interacts with limb bud cells and how the retinoic acid signal is integrated with other signals to mould and pattern the developing limb.  相似文献   

5.
6.
7.
Expression and function of a retinoic acid receptor in budding ascidians   总被引:8,自引:0,他引:8  
 Retinoic acid is thought to induce transdifferentiation of multipotent epithelial stem cells in the developing buds of the ascidian Polyandrocarpa misakiensis. We isolated a cDNA clone from this species, named PmRAR, encoding a retinoic acid receptor (RAR) homologue. PmRAR clusters with other RARs on phylogenetic trees constructed by three different methods. Within the cluster, PmRAR is on a separate branch from all the subtypes of RARs, suggesting that RAR subtypes arose in the ancestral vertebrates after divergence of vertebrates and urochordates. The embryos of another ascidian species Ciona intestinalis were co-electroporated with a mixture of a PmRAR expression vector and a lacZ reporter plasmid containing vertebrate-type retinoic acid response elements. The expression of lacZ depended on the presence of both retinoic acid and PmRAR, suggesting that PmRAR is a functional receptor. PmRAR mRNA is expressed in the epidermis and mesenchyme cells of the Polyandrocarpa developing bud. The mRNA is not detectable in the mesenchyme cells in the adult body wall, but its expression can be induced by retinoic acid in vitro. These results suggest that the PmRAR is a mediator of retinoic acid signalling in transdifferentiation during asexual reproduction of protochordates. Received: 6 April 1998 / Accepted: 27 July 1998  相似文献   

8.
The expression of MyoD1 in myogenic cells located in the muscle prospective region of the limb bud at stage 20-22 was highly sensitive to retinoic acid. Unlike RAR-beta, the expression of MyoD1 mRNA in the muscle precursor cells was significantly increased by retinoic acid at lower concentrations (0.1-10 nM), but inhibited by it at higher concentrations (0.1-1 microM). The ambivalent modulation of MyoD1 expression suggested that MyoD1 expression is regulated by not only the retinoic acid receptor and its response element, but also by other factors. Retinoic acid may be involved in the differentiation of the myogenic cells during early development.  相似文献   

9.
The two cellular retinoic acid binding proteins, CRABP I and CRABP II, belong to a family of small cytosolic lipid binding proteins and are highly conserved during evolution. Both proteins are expressed during embryogenesis, particularly in the developing nervous system, craniofacial region and limb bud. CRABP I is also expressed in several adult tissues, however, in contrast, CRABP II expression appears to be limited to the skin. It is likely that these proteins serve as regulators in the transport and metabolism of retinoic acid in the developing embryo and throughout adult life. It has been proposed that CRABP I sequesters retinoic acid in the cytoplasm and prevents nuclear uptake of retinoic acid. A role in catabolism of retinoic acid has also been proposed. Recent gene targeting experiments have shown that neither of the two CRABPs are essential for normal embryonic development or adult life. Examination of CRABP I expression at subcellular resolution reveals a differential cytoplasmic and/or nuclear localization of the protein. A regulated nuclear uptake of CRABP I implies a role for this protein in the intracellular transport of retinoic acid. A protein mediated mechanism which controls the nuclear uptake of retinoic acid may play an important role in the transactivation of the nuclear retinoic acid receptors.  相似文献   

10.
11.
A cDNA clone related to mouse Type IV collagen has been prepared from F9 teratocarcinoma cells induced to differentiate with retinoic acid and dibutyryl-cAMP. This cDNA clone has been used to investigate the regulation of Type IV collagen mRNA during differentiation. The level of this mRNA is very low in untreated F9 cells, increases substantially after treatment of the cells with retinoic acid, and is further increased by addition of dibutyryl-cAMP. In contrast, dibutyryl-cAMP has no effect on the mRNA level in cells that have not been previously exposed to retinoic acid. These results demonstrate that these two compounds regulate in a sequential manner the steady-state level of Type IV collagen mRNA. This cDNA clone should allow a detailed examination of the mechanism of the two-stage regulation of collagen expression by retinoids and cyclic AMP.  相似文献   

12.
13.
14.
Characterization of retinoid metabolism in the developing chick limb bud   总被引:8,自引:0,他引:8  
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of retinoids in the chick limb bud system. To study retinoid metabolism in the bud, all-trans-[3H]retinol, all-trans-[3H]retinal and all-trans-[3H]retinoic acid were released into the posterior region of the limb anlage, the area that contains the zone of polarizing activity, a tissue possibly involved in limb pattern formation. We found that the locally applied [3H]retinol is primarily converted to [3H]retinal, [3H]retinoic acid and a yet unidentified metabolite. When [3H]retinal is locally applied, it is either oxidized to [3H]retinoic acid or reduced to [3H]retinol. In contrast, local delivery of retinoic acid to the bud yields neither retinal nor retinol nor the unknown metabolite. This flow of metabolites agrees with the biochemical pathway of retinoids that has previously been elucidated in a number of other animal systems. To find out whether metabolism takes place directly in the treated limb bud, we have compared the amount of [3H]retinoid present in each of the four limb anlagen following local treatment of the right wing bud. The data suggest that retinoid metabolism takes place mostly in the treated limb bud. This local metabolism could provide a simple mechanism to generate in a controlled fashion the biologically active all-trans-retinoic acid from its abundant biosynthetic precursor retinol. In addition, local metabolism supports the hypothesis that retinoids are local chemical mediators involved in pattern formation.  相似文献   

15.
16.
Small, positively charged beads that slowly release known amounts of all-trans-retinoic acid have been implanted below the apical ectodermal ridge at the anterior margin (opposite somite 16) of wing buds of 3 1/2 day-old chick embryos. The continuous release of retinoic acid is shown to create an anteroposterior concentration gradient of retinoic acid in the limb field that is stable with time, despite the fact that this compound is metabolized by the limb tissue. With beads that release increasing amounts of retinoic acid, the normal 234 digit pattern is progressively altered to a 2234, to a 32234, and then to a 432234 pattern. The tissue concentrations of all-trans-retinoic acid required to change the digit pattern in this way range between 1 and 25 nM. When the same amounts of retinoic acid are released from posteriorly implanted beads (placed below the apical ectodermal ridge opposite somite border 19/20 or somite 20), the normal digit pattern is unaffected. Implantations of beads that release all-trans-retinoic acid are thus identical in their effect to grafts of cells from the limb polarizing region, which cause similar dose-dependent changes in the digit pattern when grafted to the anterior margin of the bud (but not when grafted opposite somites 19 or 20). Because of the low concentrations of retinoic acid required for its biological effect, the graded response observed, and the fact that a concentration gradient is established across the limb field, all-trans-retinoic acid closely mimics the putative morphogen that has been postulated to be emitted by polarizing region cells during normal development.  相似文献   

17.
Retinoic acid, a physiologically active metabolite of vitamin A, is known animal teratogen. Among other malformations, limb abnormalities are produced and are attributed to a selective inhibition of differentiating prechondrogenic mesenchyme resulting in reduced or absent cartilage elements. Evidence is available that the cellular retinoic acid binding protein (cRABP) may be important in mediating the biological effects of retinoic acid. In this study, the cRABP has been identified by sucrose gradient sedimentation analysis in the gestation day 10 (Theiler stages 16-17) mouse forelimb bud, which contains retinoic-acid-sensitive prechondrogenic mesenchyme. Saturation analysis demonstrated values for the apparent dissociation constant (Kd) of 2.0 and 2.2 X 10(-9)M and for the total specific binding capacity for [3H]-trans-retinoic acid of 24.5 and 25.6 pmoles per mg cytosolic protein. The binding specificity of the forelimb bud cRABP for all-trans-retinoic acid was demonstrated in competition assays using all-trans-retinol, all-trans-retinal, and 13-cis-retinoic acid. In addition, 13-cis-retinoic acid was demonstrated to have a lower affinity for the cRABP than all-trans-retinoic acid, a result which may be related to the lower teratogenic potency of the 13-cis-retinoic acid. Thus, the cRABP was demonstrated in the mouse forelimb bud at a time of susceptibility for the production of limb malformations by retinoic acid. The role of the cRABP in the mechanism of retinoic acid teratogenicity remains to be delineated.  相似文献   

18.
Summary Mesenchyme cells derived from embryonic rat limb buds cultured at high density differentiated into chondrocytes. The degree of chondrogenesis was assessed by alcian blue staining, a stain specific for cartilage matrix. The addition of retinoic acid on day 1 of culture inhibited chondrogenesis in a dose-dependent fashion. When retinoic acid was added to the cultures on day 5, the cartilage nodules, consisting of newly differentiated cartilage cells, disappeared during the following 6 days. Coinciding with this process the histochemically demonstrable alkaline phosphatase activity, localized in the internodular areas, also disappeared. This indicated that retinoic acid not only inhibited chondrogenesis but also induced resorption of cartilage cells and that at least two cell types were affected, the cartilage cells and the cells bearing alkaline phosphatase.Actinomycin D and cycloheximide, inhibitors of RNA and protein synthesis, suppressed the retinoic acid effect in day 5 limb bud cell cultures. This result indicated that the effect of retinoic acid required RNA and protein synthesis and is compatible with the view that vitamin A may act in a hormone-like way.  相似文献   

19.
《The Journal of cell biology》1985,101(5):1913-1920
All-trans-retinoic acid causes striking digit pattern changes when it is continuously released from a bead implanted in the anterior margin of an early chick wing bud. In addition to the normal set of digits (234), extra digits form in a mirror-symmetrical arrangement, creating digit patterns such as a 432234. These retinoic acid-induced pattern duplications closely mimic those found after grafts of polarizing region cells to the same positions with regard to dose-response, timing, and positional effects. To elucidate the mechanism by which retinoic acid induces these pattern duplications, we have studied the temporal and spatial distribution of all-trans-retinoic acid and its potent analogue TTNPB in these limb buds. We find that the induction process is biphasic: there is an 8-h lag phase followed by a 6-h duplication phase, during which additional digits are irreversibly specified in the sequence digit 2, digit 3, digit 4. On average, formation of each digit seems to require between 1 and 2 h. The tissue concentrations, metabolic pattern, and spatial distribution of all- trans-retinoic acid and TTNPB in the limb rapidly reach a steady state, in which the continuous release of the retinoid is balanced by loss from metabolism and blood circulation. Pulse-chase experiments reveal that the half-time of clearance from the bud is 20 min for all-trans- retinoic acid and 80 min for TTNPB. Manipulations that change the experimentally induced steep concentration gradient of TTNPB suggest that a graded distribution of retinoid concentrations across the limb is required during the duplication phase to induce changes in the digit pattern. The extensive similarities between results obtained with retinoids and with polarizing region grafts raise the possibility that retinoic acid serves as a natural "morphogen" in the limb.  相似文献   

20.
The cellular retinoic acid binding protein is thought to be involved in the retinoic-acid-mediated signal transduction pathway. We have isolated the mouse cellular retinoic acid binding protein cDNA from an embryonal-carcinoma-derived cell line by using differential cDNA cloning strategies. In situ hybridization on sections of mouse embryos of various developmental stages indicated that the cellular retinoic acid binding protein gene, which we localized on mouse chromosome 9, is preferentially expressed in a subpopulation of neurectodermal cells. This restricted expression pattern suggests an important role for cellular retinoic acid binding protein in murine neurogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号