首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three species of glass sponges (Class Hexactinellida) form massive deep‐water reefs by growing on the skeletons of past generations, with new growth largely vertical and away from sediment that buries the lower portions. Growth is therefore essential for reef health, but how glass sponges produce new skeleton or tissue is not known. We used fluorescence, light, and electron microscopy to study skeletal and tissue growth in the reef‐forming glass sponge Aphrocallistes vastus. The sponge consists of a single large tube (the osculum), usually with several side branches, each of which can function as an effective excurrent vent. New tissue forms at the tips of each of these extensions, but how this occurs in a syncytial animal, and how the tubes expand laterally as the sponge gets larger, are both unknown. The fluorescent dye PDMPO labeled more spicule types in the tips of the sponge than elsewhere, indicating growth that was concentrated at the edge of the osculum. New tissue production was tracked using the thymidine analog EdU. EdU‐labeled nuclei were found predominantly at the edge or lip of the osculum. In that region new flagellated chambers were formed from clusters of choanoblasts that spread out around the enlarging chamber. In cellular sponges clusters of choanocytes form flagellated chambers through several rounds of mitotic divisions, and also by immigration of mesohyl cells, to expand the chamber to full size. By contrast, chambers in glass sponges expand as choanoblasts produce enucleate collar bodies to fill them out. Growing chambers with enucleate structures may be an adaptation to life in the deep sea if chambers with cells, and therefore more nuclei, are costly to build.  相似文献   

2.
Sponges are suspension feeders that use flagellated collar-cells (choanocytes) to actively filter a volume of water equivalent to many times their body volume each hour. Flow through sponges is thought to be enhanced by ambient current, which induces a pressure gradient across the sponge wall, but the underlying mechanism is still unknown. Studies of sponge filtration have estimated the energetic cost of pumping to be <1% of its total metabolism implying there is little adaptive value to reducing the cost of pumping by using "passive" flow induced by the ambient current. We quantified the pumping activity and respiration of the glass sponge Aphrocallistes vastus at a 150 m deep reef in situ and in a flow flume; we also modeled the glass sponge filtration system from measurements of the aquiferous system. Excurrent flow from the sponge osculum measured in situ and in the flume were positively correlated (r>0.75) with the ambient current velocity. During short bursts of high ambient current the sponges filtered two-thirds of the total volume of water they processed daily. Our model indicates that the head loss across the sponge collar filter is 10 times higher than previously estimated. The difference is due to the resistance created by a fine protein mesh that lines the collar, which demosponges also have, but was so far overlooked. Applying our model to the in situ measurements indicates that even modest pumping rates require an energetic expenditure of at least 28% of the total in situ respiration. We suggest that due to the high cost of pumping, current-induced flow is highly beneficial but may occur only in thin walled sponges living in high flow environments. Our results call for a new look at the mechanisms underlying current-induced flow and for reevaluation of the cost of biological pumping and its evolutionary role, especially in sponges.  相似文献   

3.
Sponges are considered to be filter feeders like their nearest protistan relatives, the choanoflagellates. Specialized "sieve" cells (choanocytes) have an apical collar of tightly spaced, rodlike microvilli that surround a long flagellum. The beat of the flagellum is believed to draw water through this collar, but how particles caught on the collar are brought to the cell surface is unknown. We have studied the interactions that occur between choanocytes and introduced particles in the large feeding chambers of a syconoid calcareous sponge. Of all particles, only 0.1-microm latex microspheres adhered to the collar microvilli in large numbers, but these were even more numerous on the choanocyte surface. Few large particles (0.5- and 1.0-microm beads and bacteria) contacted the collar microvilli; most were phagocytosed by lamellipodia at the lateral or apical cell surface, and clumps of particles were engulfed by pseudopodial extensions several micrometers from the cell surface. Although extensions of the choanocyte apical surface up to 16 microm long were found, most were 4 microm long, twice the height of the collar microvilli. These observations offer a different view of particle uptake in sponges, and suggest that, at least in syconoid sponges, uptake of particles is less dependent on the strictly sieving function of the collar microvilli.  相似文献   

4.
5.
Tse SW  Yu J 《Biofouling》2003,19(4):223-233
Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml-1 carrier) in comparison with PVA particles (4.8 mg VS ml-1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factorin the thicker biofilms (effectiveness factor eta = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml-1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l-1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80-81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to approximately 80% by the augmented system.  相似文献   

6.
Different kinds of particles were investigated for their potential use as supports for exonucleolytic sequence analysis. Composite beads composed of an unreactive polystyrene "core" and a "shell" of functionalized silica nanoparticles were found to best fulfill the various prerequisites. The biotin/streptavidin system was used for attachment of DNA to composite beads of 6 microm diameter. Applying M13 ssDNA in extremely high dilution (approximately 1 molecule versus 100 beads) with internal fluorescent labels, only a small fraction of beads was found to be associated with fluorescent entities, which likely correspond to a very small number of bound DNA molecules per particle. For better selection and transfer of DNA-containing beads into microstructures for exonuclease degradation the loading experiments were repeated with composite beads of 2.3 microm diameter. In this case a covalent bond was formed between carboxylate-functionalized beads and amino-terminated oligonucleotides, which were detected through external labelling with fluorescent nanoparticles interacting with biotinylated segments of the complementary strand.  相似文献   

7.
Siu-Wah Tse  Jian Yu 《Biofouling》2013,29(4):223-233

Pseudomonas GM3, a highly efficient strain in cleavage of azo bonds of synthetic dyes under anoxic conditions, was immobilized via adsorption on two types of carriers, porous glass beads and solid PVA particles. The cells were cultivated in a nutrient medium, adsorbed on sterile carriers, stabilized as biofilms in repeated batch cultures, and introduced into a chemostat activated sludge reactor for augmented decolourization. The microbial cells were quickly adsorbed and fixed on the PVA surface, compared to a slow and linear immobilization on the glass surface. The porous structure of glass beads provided shelter for the embedded cells, giving a high biomass loading or thick biofilm (13.3 mg VS ml?1 carrier) in comparison with PVA particles (4.8 mg VS ml?1 carrier), but the mass transfer of substrate in the biofilm became a significant limiting factor in the thicker biofilms (effectiveness factor η = 0.31). The microbial decolourization rate per volume of carriers was 0.15 and 0.17 mg dye ml?1 of glass beads and PVA particles, respectively. In augmented decomposition of a recalcitrant azo dye (60 mg l?1), the immobilized Pseudomonas cells in porous glass beads gave a stable decolourization efficiency (80 - 81%), but cells fixed on solid PVA particles showed an initial high colour removal of 90% which then declined to a stable removal efficiency of 81%. In both cases, the colour removal efficiency of the chemostat bioreactor was increased from < 10% by an activated sludge to ~80% by the augmented system.  相似文献   

8.
A flow injection method for the determination of total and free cholesterol is presented. Cholesterol esterase and cholesterol oxidase are immobilized on aminoalkyl glass beads. The beads are packed into a tubular glass reactor. The cholesterol esters traversing through the esterase reactor are cleaved to cholesterol and fatty acids. The oxidase reactor converts cholesterol to cholest-4-en-3-one and hydrogen peroxide is generated. The sample stream is merged with reagent streams consisting of a peroxidase solution and a solution of 2,2'-azino-bis-(3-ethyl-benzthiazoline-6-sulfonic acid) diammonium salt, and a hydrogen peroxide-dependent color reaction takes place in a short coiled reactor. The signal is monitored by means of fiber optic instrumentation. Cholesterol concentration can be related to the absorption of the oxidized dye form at a wavelength of 425 nm. The working range is 0.5-0.8 mmol l-1, and the sample throughputs are 60 and 30 h-1 for free and total cholesterol, respectively.  相似文献   

9.
In rats, remnant particles derived from chylomicron-like emulsions containing 1,3-dioleoyl-2-stearoylglycerol (OSO) are removed from plasma more slowly than remnants derived from triolein emulsions. The effect associated with a saturated acyl chain at the glycerol 2-position could be reproduced by incorporating 2-stearoylglycerol (MS) in a triolein emulsion. When MS solubilized with rat albumin or in plasma was injected before the injection of a triolein emulsion, clearance of the triolein emulsion was unchanged. The metabolic fate of MS, monitored with 14C-labelled MS, was similar whether incorporated in triacylglycerol emulsion or injected independently. More than 95% of MS had disappeared from the circulation by 5 min after the injection and the radioactivity was found in liver, spleen, muscle and adipose tissue. Some MS label appeared in plasma triacylglycerol. Remnants made in vitro by incubating triolein or OSO emulsions with post-heparin plasma showed no differences in their disappearance from plasma. With OSO emulsion, the in vitro remnants were found to contain more MS than remnants made in vivo in hepatectomized rats. Simultaneous injections of mixtures containing OSO and triolein emulsions, or triolein emulsions with and without MS, each labelled with either [3H]cholesteryl oleate or [14C]cholesteryl oleate showed consistently slower remnant removal and decreased liver uptake of the emulsions containing OSO or MS. Affinity columns and immunodiffusion all indicated that there was no difference in the amounts of apolipoprotein E associated with OSO or triolein particles. The protein spectra of in vivo remnants derived from OSO and triolein emulsion were also similar when examined by SDS-PAGE and isoelectric focusing gels. Our results show that the effects due to OSO or MS are mediated by the presence of MS in the emulsion particle surface, while indirect effects expressed in plasma or liver are excluded. The precise mechanism of the effect remains to be established, but it does not correlate with measurable changes in the spectra of apolipoproteins associated with the emulsion remnants.  相似文献   

10.
Myocytes are long, fusiform cells found in the osculum and other contractile areas of many sponges. Myocytes in the oscular sphincter of Tedania ignis and the osculum and dermal membrane of Microciona prolifera were studied with light- and electron-microscopes to compare their structure to that of muscles. Salient points of similarity between myocytes and smooth muscles were their long, fusiform shape, their red color after staining with Mallory's triple stain, and the presence of filaments running longitudinally in the cytoplasm. Microciona myocytes have thick filaments of 150–250 Å diameter and thin filament of 50–70 Å diameter, and in transverse sections the thin filaments occasionally appear as a ring of dots around a thick filament. Longitudinal sections of Tedania myocytes show only one type of filament, which varies from 100 Å to 200–300 Å diameter in thick regions of the filament. Although transverse sections show light material around the dense filaments, a distinct pattern of thick and thin filaments is not seen in Tedania. Due to infrequent contacts between cells, the large extra-cellular space observed with the electron microscope (49% in Tedania, 57% in Microciona), and the absence of nerves, each myocyte probably acts as an independent contractile unit.  相似文献   

11.
The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins.  相似文献   

12.
Gravitropic responses of oat coleoptiles were measured in different growth media; humid air, natural soil and artificial soil (glass beads). The oat coleoptiles in soil and glass beads were monitored by NMR imaging, while those in humid air were imaged in darkness with an infrared-sensitive charge-coupled device (CCD) camera. The present study shows for the first time that gravitropic experiments can be performed in artificial soil using NMR imaging as a convenient and suitable recording method. Not only was it possible to follow the gravitropic curvatures in natural soil, but the artificial soil allowed plant images of sufficient spatial and temporal resolution to be recorded. The advantages of using artificial soil in magnetic resonance imaging studies are that the iron content of glass beads is very low compared with natural soil, and that the artificial soil matrix can easily be standardized with regard to particle size distribution and nutrient content. Two types of glass beads were used, the diameter of the small and the large beads being 300–400 and 420–840 μm, respectively. The growth rate of the coleoptiles in soil and in big beads was roughly the same and only slightly lower than in humid air, whereas small beads reduced the growth rate by approx. 16%. The bending rate of the coleoptiles during the gravitropic response was reduced by c. 65% in soil and 75% in bead mixtures relative to bending in air. It should be noted, however, that the maximum curvature of the coleoptile tip was of the same order in all cases, about 35°. This value may represent the largest possible curvature of the organ. The potential of NMR imaging to study how plant organs penetrate the soil under the influence of gravitropism, mechanical impedance and thigmotropism is also discussed.  相似文献   

13.
Both phagocytosis (of particles) and pinocytosis (of solutes) occur in macrophages. It is not known, however, whether particles, if they are small enough, can enter by pinocytosis, nor whether there is a minimum size of particle capable of triggering phagocytic uptake. These questions have been investigated by studying, in vitro, the uptake by rat peritoneal macrophages of particles ranging in diameter from 30 nm to 1100 nm. Percoll (30 nm diameter) and polystyrene beads (100, 300, 600, 800 or 1100 nm diameter) were 125I-iodinated and their uptake by macrophages was measured in the absence or presence of metabolic and cytoskeletal inhibitors. Since uptake, expressed as an Endocytic Index (microliter/10(6) cells per h), increased steadily with the duration of incubation and was inhibited by low temperature or metabolic inhibitors, it was concluded that true endocytosis, and not a superficial cell-association, was being measured. Rates of clearance increased with increasing particle diameter. The rate of uptake of Percoll was 10-times, and of 100 nm polystyrene beads 100-times, the rate of fluid-phase pinocytosis, as measured by the uptake of 125I-labelled polyvinylpyrrolidone. Polystyrene beads of 1100 nm diameter were captured at 700-times this rate. The differential effects of colchicine and cytochalasin B on the uptake of 125I-labelled polyvinylpyrrolidone and of 1100 nm polystyrene beads were taken as indicators of their effects on pinocytosis and phagocytosis respectively. It is concluded that Percoll, although particulate, is captured by pinocytosis. The pattern of inhibition of uptake of polystyrene particles suggests that there is no radical discontinuity between pinocytic and phagocytic uptake, but that the contribution of phagocytosis steadily increases with increasing particle diameter. The results are discussed.  相似文献   

14.
Laser-Induced Heating in Optical Traps   总被引:4,自引:2,他引:2       下载免费PDF全文
In an optical tweezers experiment intense laser light is tightly focused to intensities of MW/cm2 in order to apply forces to submicron particles or to measure mechanical properties of macromolecules. It is important to quantify potentially harmful or misleading heating effects due to the high light intensities in biophysical experiments. We present a model that incorporates the geometry of the experiment in a physically correct manner, including heat generation by light absorption in the neighborhood of the focus, balanced by outward heat flow, and heat sinking by the glass surfaces of the sample chamber. This is in contrast to the earlier simple models assuming heat generation in the trapped particle only. We find that in the most common experimental circumstances, using micron-sized polystyrene or silica beads, absorption of the laser light in the solvent around the trapped particle, not in the particle itself, is the most important contribution to heating. To validate our model we measured the spectrum of the Brownian motion of trapped beads in water and in glycerol as a function of the trapping laser intensity. Heating both increases the thermal motion of the bead and decreases the viscosity of the medium. We measured that the temperature in the focus increased by 34.2 ± 0.1 K/W with 1064-nm laser light for 2200-nm-diameter polystyrene beads in glycerol, 43.8 ± 2.2 K/W for 840-nm polystyrene beads in glycerol, 41.1 ± 0.7 K/W for 502-nm polystyrene beads in glycerol, and 7.7 ± 1.2 K/W for 500-nm silica beads and 8.1 ± 2.1 K/W for 444-nm silica beads in water. Furthermore, we observed that in glycerol the heating effect increased when the bead was trapped further away from the cover glass/glycerol interface as predicted by the model. We show that even though the heating effect in water is rather small it can have non-negligible effects on trap calibration in typical biophysical experimental circumstances and should be taken into consideration when laser powers of more than 100 mW are used.  相似文献   

15.
Feng S  Xue L  Liu H  Lu P 《Molecular biology reports》2009,36(6):1433-1439
Dunaliella salina has been exploited as a new type of bioreactor due to its unique advantages. However, this bioreactor application was restricted for absence of a high-efficiency and stable transformation method at present. In the present study, the cells of D. salina were transformed by glass beads. The results of histochemical staining revealed that the GUS gene was successfully expressed in the positive transformants, and PCR and PCR-Southern blot analysis further demonstrated that the bar gene was integrated into the D. salina genome. Moreover, the three transformation methods, including glass beads, bombardment particle and electroporation, were compared for screening a high-efficiency transformation method for gene engineering of D. salina. The results showed that transformation efficiency of the glass beads was the highest, approximately 102 transformants/μg DNA. It is concluded that the established glass beads method has been demonstrated to be an optimal transformation way for D. salina.  相似文献   

16.
Lipid emulsion particles were prepared by sonicating four different lipid mixtures (triacylglycerol (TAG), 70%; phospholipid, 25%; cholesteryl oleate (CO), 3%; and free cholesterol, 2%), then purified by density gradient ultracentrifugation. For three test mixtures, the TAG contained 50, 75, or 100% 1,3-dioleyl-2-stearylglycerol (OSO) with the remainder being triolein (OOO); 100% triolein in the lipid mixture was used as the control. After intravenous injection of the lipid particles into unanesthetized rats, removal of radioactive TAG fatty acid and CO from plasma was measured for 30 min, then liver and spleen uptakes were measured. When emulsions contained 75% or 100% OSO as TAG, the plasma removal rates of CO were, respectively, 60% or 30% of the rate when the TAG was 100% triolein; smaller recoveries of CO were found in the liver. The clearances of TAG fatty acid did not differ significantly and the recoveries of TAG fatty acid in the organs were not affected by the type of emulsion injected. Remnant particles were derived from donor rats in which uptake was blocked by exclusion of liver and other viscera from the circulation before injection of 100% OOO and 100% OSO emulsions. When injected into recipient intact rats, the removal of remnants from plasma was slower for remnants derived 15 min after injection of 100% OSO emulsions than from 100% OOO emulsions, showing that the slower removal of emulsion CO was due to slower remnant uptake from the plasma with OSO emulsions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The roles of somatic and oral cilia and solid particles during digestive vacuole (DV) formation in Paramecium multimicronucleatum were investigated using video-enhanced and immunofluorescence microscopy. Membrane incorporation into DVs was found to increase linearly with increasing particle concentration. The rate of discoidal vesicle transport to the cytopharynx was not affected by particles, showing that particles are not required for membrane trafficking to the cytopharynx. However, the presence of particles leads to an increased membrane fusion between the cytopharyngeal membrane and the discoidal vesicles. When live cells lost their somatic cilia on the left-ventral side anterior to the oral region due to deciliation, membrane incorporation into newly formed DVs was strongly inhibited. Using video-enhanced microscopy, latex beads were seen to be loaded along the quadrulus on the dorsal surface of the buccal cavity, but few beads were seen next to the dorsal and ventral peniculi. Particle sequestration into a pre-formed nascent digestive vacuole (NDV) was studied in Triton X-100-permeabilized cells whose ciliary beating was reactivated by the addition of Mg-ATP. Both beat frequency and the percentage of cells containing bead-labeled NDV were dependent on the Mg-ATP concentration: the higher the beat frequency, the higher the percentage of cells with a bead-labeled NDV. These results suggest that ciliary beating is probably the only mechanism required for particle accumulation in the NDV, while a coordinated beating of the somatic cilia on the left-ventral side anterior to the oral region as well as the quadrulus moves particles into the NDV. The beating of the peniculi may somehow prevent the backward flow of particles out of the NDV.  相似文献   

18.
Vernalized gemmules of the marine sponge Haliclona loosanoffi were cultured at 20°C, fixed at 24-hour intervals (0–11 days), and processed for light microscopy by using a variety of absorption and fluorescent staining methods. The cytochemistry and morphology of development were compared to the well-studied developmental patterns of freshwater sponges and to the patterns described in the marine sponge Suberites domuncula. The precocious development of H. loosanoffi gemmules involves early morphogenesis occurring within the unhatched gemmule, as opposed to the patterns in freshwater sponges, where most development occurs after the gemmule hatches. Definitive sponge tissue surrounding a single osculum is present 9 days after release from dormancy.  相似文献   

19.
I have examined the light-scattering behavior of a number of gel matrices used in gel filtration chromatography. The angular dependence of light scattering by Sephadexes is consistent with treatment of the particles as large scattering particles with a low refractive index increment (mu). Such particles scatter light almost exclusively in the forward direction, permitting their use in direct scanning gel chromatography systems without corrections for multiple scattering and the consequent variation in pathlength through the column. Any matrix material with an appropriate combination of these two properties (large effective size and low mu relative to solvent) will perform reasonably well in direct scanning systems while any material with very small effective particle size (agaroses) or high mu (glass beads) may be expected to perform poorly. Agaroses may be acceptable for work in the visible region of the spectrum while glass beads are not.  相似文献   

20.
The capacity of Acanthamoeba to distinguish nutritive yeast particles from non-nutritive plastic beads during phagocytosis was investigated. When cells were allowed to phagocytose yeast to capacity, endocytosis stopped and subsequent presentation of particles (either yeast or beads) did not result in further uptake. By contrast, when cells were allowed to phagocytose plastic beads to capacity and a second dose of particles was presented (either yeast or beads), the cells exocytosed the internal particles and took up new ones. Yeast rendered indigestible by extensive chemical cross-linking were taken up at rates similar to those of untreated yeast, but, like beads, they were exocytosed when a second dose of particles was presented. The results show that an internal distinction is made between vacuoles containing yeast and vacuoles containing plastic beads, and they are consistent with the hypothesis that the presence within the vacuoles of material capable of being digested prevents exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号