首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caspase-8 is now appreciated to govern both apoptosis following death receptor ligation and cell survival and growth via inhibition of the Ripoptosome. Cells must therefore carefully regulate the high level of caspase-8 activity during apoptosis versus the modest levels observed during cell growth. The caspase-8 paralogue c-FLIP is a good candidate for a molecular rheostat of caspase-8 activity. c-FLIP can inhibit death receptor-mediated apoptosis by competing with caspase-8 for recruitment to FADD. However, full-length c-FLIPL can also heterodimerize with caspase-8 independent of death receptor ligation and activate caspase-8 via an activation loop in the C terminus of c-FLIPL. This triggers cleavage of c-FLIPL at Asp-376 by caspase-8 to produce p43FLIP. The continued function of p43FLIP has, however, not been determined. We demonstrate that acute deletion of endogenous c-FLIP in murine effector T cells results in loss of caspase-8 activity and cell death. The lethality and caspase-8 activity can both be rescued by the transgenic expression of p43FLIP. Furthermore, p43FLIP associates with Raf1, TRAF2, and RIPK1, which augments ERK and NF-κB activation, IL-2 production, and T cell proliferation. Thus, not only is c-FLIP the initiator of caspase-8 activity during T cell activation, it is also an initial caspase-8 substrate, with cleaved p43FLIP serving to both stabilize caspase-8 activity and promote activation of pathways involved with T cell growth.  相似文献   

2.
The Fas/Fas ligand (L) system plays an important role in the maintenance of peripheral B cell tolerance and the prevention of misguided T cell help. CD40-derived signals are required to induce Fas expression on virgin B cells and to promote their susceptibility to Fas-mediated apoptosis. In the current study, we have analyzed the early biochemical events occurring upon Fas ligation in CD40L-activated primary human tonsillar B cells with respect to Fas-associated death domain protein (FADD), caspase-8/FADD-like IL-1beta-converting enzyme (FLICE), and c-FLICE inhibitory protein (FLIP). We report here that Fas-induced apoptosis in B cells does not require integrity of the mitochondrial Apaf-1 pathway and that caspase-8 is activated by association with the death-inducing signaling complex (DISC), i.e., upstream of the mitochondria. We show that both FADD and the zymogen form of caspase-8 are constitutively expressed at high levels in virgin B cells, whereas c-FLIP expression is marginal. In contrast, c-FLIP, but neither FADD nor procaspase-8, is strongly up-regulated upon ligation of CD40 or the B cell receptor on virgin B cells. Finally, we have found that c-FLIP is also recruited and cleaved at the level of the DISC in CD40L-activated virgin B cells. We propose that c-FLIP expression delays the onset of apoptosis in Fas-sensitive B cells. The transient protection afforded by c-FLIP could offer an ultimate safeguard mechanism against inappropriate cell death or allow recruitment of phagocytes to ensure efficient removal of apoptotic cells.  相似文献   

3.
The caspase 8 inhibitor c-FLIP(L) can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIP(L) in the T-cell compartment (c-FLIP(L) Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIP(L) Tg mice. In contrast, activation-induced cell death of T cells in c-FLIP(L) Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIP(L) Tg mice differed from Fas-deficient mice by showing no accumulation of B220(+) CD4(-) CD8(-) T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIP(L) Tg mice. Thus, a major role of c-FLIP(L) in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.  相似文献   

4.
Evasion of immune surveillance is a key step in malignant progression. Interactions between transformed hematopoietic cells and their environment may initiate events that confer resistance to apoptosis and facilitate immune evasion. In this report, we demonstrate that beta(1) integrin-mediated adhesion to fibronectin inhibits CD95-induced caspase-8 activation and apoptosis in hematologic tumor cell lines. This adhesion-dependent inhibition of CD95-mediated apoptosis correlated with enhanced c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long (c-FLIP(L)) cytosolic solubility compared with nonadhered cells. Cytosolic c-FLIP(L) protein preferentially associated with cytosolic Fas-associated death domain protein (FADD) and localized to the death-inducing signal complex after CD95 ligation in adherent cells. The incorporation of c-FLIP(L) in the death-inducing signal complex prevented procaspase-8 processing and activation of the effector phase of apoptosis. Adhesion to fibronectin increased c-FLIP(L) cytosolic solubility and availability for FADD binding by redistributing c-FLIP(L) from a preexisting membrane-associated fraction. Increased cytosolic availability of c-FLIP(L) for FADD binding was not related to increased levels of RNA or protein synthesis. These data show that adhesion of anchorage-independent cells to fibronectin provides a novel mechanism of resistance to CD95-mediated programmed cell death by regulating the cellular localization and availability of c-FLIP(L).  相似文献   

5.
The thymus is the primary organ responsible for de novo generation of immunocompetent T cells that have a diverse repertoire of antigen recognition. During the developmental process, 98% of thymocytes die by apoptosis. Thus apoptosis is a dominant process in the thymus and occurs through either death by neglect or negative selection or through induction by stress/aging. Caspase activation is an essential part of the general apoptosis mechanism, and data suggest that caspases may have a role in negative selection; however, it seems more probable that caspase-8 activation is involved in death by neglect, particularly in glucocorticoid-induced thymocyte apoptosis. Caspase-8 is active in double-positive (DP) thymocytes in vivo and can be activated in vitro in DP thymocytes by T-cell receptor (TCR) crosslinking to induce apoptosis. Caspase-8 is a proapoptotic member of the caspase family and is considered an initiator caspase, which is activated upon stimulation of a death receptor (e.g., Fas), recruitment of the adaptor molecule FADD, and recruitment and subsequent processing of procaspase-8. The main role of caspase-8 seems to be pro-apoptotic and, in this review, we will discuss about the involvement of caspase-8 in (1) TCR-triggered thymic apoptosis; (2) death receptor-mediated thymic apoptosis; and (3) glucocorticoid-induced thymic apoptosis. Regarding TCR triggering, caspase-8 is active in medullary, semi-mature heat-stable antigenhi (HAShi SP) thymocytes as a consequence of strong TCR stimulation. The death receptors Fas, FADD, and FLIP are involved upstream of caspase-8 activation in apoptosis; whereas, Bid and HDAC7 are involved downstream of caspase-8. Finally, caspase-8 is involved in glucocortocoid-induced thymocyte apoptosis through an activation loop with the protein GILZ. GILZ activates caspase-8, promoting GILZ sumoylation and its protection from proteasomal degradation.  相似文献   

6.
Cellular FLICE (FADD-like interleukin-1-beta-converting enzyme)-inhibitory protein (c-FLIP) inhibits death receptor-induced apoptosis by binding to FADD (Fas-associated death domain protein) and pro-caspase-8. c-FLIP has also been shown to transmit activation signals and to enhance interleukin (IL)-2 production. However, c-FLIP-mediated T cell activation is difficult to detect in most cells. We found that in DO11.10 T cells, c-FLIP expression led to inhibition of IL-2 production, in contrast to the readily detectable c-FLIP-induced activation in Jurkat cells. A direct comparison revealed that distinct signal pathways were regulated by c-FLIP in Jurkat cells and DO11.10 cells. We investigated whether constitutively activated phosphatidylinositide 3-kinase (PI3K) in Jurkat cells stimulated c-FLIP. Inhibition of PI3K in Jurkat cells abrogated a c-FLIP-mediated increase in IL-2 production. In addition, c-FLIP coordinated with active PI3K for ERK activation. Furthermore, introduction of PTEN back into Jurkat cells eliminated the stimulatory effect of c-FLIP on IL-2 production and ERK activation. Our results suggest that priming with PI3K promotes the coupling of c-FLIP to T cell activation.  相似文献   

7.
Fas-associated death domain protein (FADD)/mediator of receptor-induced toxicity-1 is required for signaling induced by death receptors such as Fas. In earlier studies, FADD-deficient mice died in utero, and a FADD deficiency in embryonic stem cells inhibited T cell production in viable FADD-/- -->RAG-1-/- chimeras. To analyze the temporal requirement of FADD in the development and function in the T lineage, it is necessary to establish viable mutant mice producing detectable FADD-deficient T cells. We generated mice that express a functional FADD:GFP fusion gene reconstituting normal embryogenesis and lymphopoiesis in the absence of the endogenous FADD. Efficient T cell-specific deletion of FADD:GFP was achieved, as indicated by the presence of a high percentage of GFP-negative thymocytes and peripheral T cells in mice expressing Lck-Cre or CD4-Cre. Sorted GFP-negative thymocytes and peripheral T cells contained undetectable levels of FADD and were resistant to apoptosis induced by Fas, TNF, and TCR restimulation. These T cell-specific FADD-deficient mice contain normal thymocyte numbers, but fewer peripheral T cells. Purified peripheral FADD-deficient T cells failed to undergo extensive homeostatic expansion after adoptive transfer into lymphocyte-deficient hosts, and responded poorly to proliferation induced by ex vivo TCR stimulation. Furthermore, deletion of FADD in preactivated mature T cells using retrovirus-Cre resulted in no proliferation. These results demonstrate that FADD plays a dispensable role during thymocyte development, but is essential in maintaining peripheral T cell homeostasis and regulating both apoptotic and proliferation signals.  相似文献   

8.
The cytokine TNF activates multiple signaling pathways leading to cellular responses ranging from proliferation and survival to apoptosis. While most of these pathways have been elucidated in detail over the past few years, the molecular mechanism leading to the activation of the MAP kinases ERK remains ill defined and is controversially discussed. Therefore, we have analyzed TNF-induced ERK activation in various human and murine cell lines and show that it occurs in a cell-type-specific manner. In addition, we provide evidence for the involvement of the signaling components Fas-associated death domain protein (FADD), caspase-8, and c-FLIP in the pathway activating ERK in response to TNF. This conclusion is based on the following observations: (I) Overexpression of FADD, caspase-8, or a c-FLIP protein containing the death effector domains only leads to enhanced and prolonged ERK activation after TNF treatment. (II) TNF-induced ERK activation is strongly diminished in the absence of FADD. Interestingly, the enzymatic function of caspase-8 is not required for TNF-induced ERK activation. Additional evidence suggests a role for this pathway in the proliferative response of murine fibroblasts to TNF.  相似文献   

9.
Cellular FLIP long form (c-FLIP(L)) was originally identified as an inhibitor of Fas (CD95/Apo-1). Subsequently, additional functions of c-FLIP(L) were identified through its association with receptor-interacting protein (RIP)1 and TNFR-associated factor 2 to activate NF-kappaB, as well as by its association with and activation of caspase-8. T cells from c-FLIP(L)-transgenic (Tg) mice manifest hyperproliferation upon activation, although it was not clear which of the various functions of c-FLIP(L) was involved. We have further explored the effect of c-FLIP(L) on CD8(+) effector T cell function and its mechanism of action. c-FLIP(L)-Tg CD8(+) T cells have increased proliferation and IL-2 responsiveness to cognate Ags as well as to low-affinity Ag variants, due to increased CD25 expression. They also have a T cytotoxic 2 cytokine phenotype. c-FLIP(L)-Tg CD8(+) T cells manifest greater caspase activity and NF-kappaB activity upon activation. Both augmented proliferation and CD25 expression are blocked by caspase inhibition. c-FLIP(L) itself is a substrate of the caspase activity in effector T cells, being cleaved to a p43(FLIP) form. p43(FLIP) more efficiently recruits RIP1 than full-length c-FLIP(L) to activate NF-kappaB. c-FLIP(L) and RIP1 also coimmunoprecipitate with active caspase-8 in effector CD8(+) T cells. Thus, one mechanism by which c-FLIP(L) influences effector T cell function is through its activation of caspase-8, which in turn cleaves c-FLIP(L) to allow RIP1 recruitment and NF-kappaB activation. This provides a partial explanation of why caspase activity is required to initiate proliferation of resting T cells.  相似文献   

10.
Fas-associated death domain (FADD) is a death domain containing cytoplasmic adapter molecule required for the induction of apoptosis by death receptors. Paradoxically, FADD also plays a crucial role in the development and proliferation of T cells. Using T cells from mice expressing a dominant negative form of FADD (FADDdd), activation with anti-TCR Ab and costimulation or exogenous cytokines is profoundly diminished. This is also seen in wild-type primary T cells transduced with the same transgene, demonstrating that FADD signaling is required in normally differentiated T cells. The defective proliferation does not appear to be related to the early events associated with TCR stimulation. Rather, with a block in FADD signaling, stimulated T cells exhibit a high rate of cell death corresponding to the initiation of cell division. Although CD4 T cells exhibit a moderate deficiency, this effect is most profound in CD8 T cells. In vivo, the extent of this defective accumulation is most apparent; lymphocytic choriomenigitis virus-infected FADDdd-expressing mice completely fail to mount an Ag-specific response. These results show that, in a highly regulated fashion, FADD, and most likely caspases, can transduce either a signal for survival or one that leads directly to apoptosis and that the balance between these opposing outcomes is crucial to adaptive immunity.  相似文献   

11.
In the early phase of an immune response, T cells are activated and acquire effector functions. Whereas these short term activated T cells are resistant to CD95-mediated apoptosis, activated T cells in prolonged culture are readily sensitive, leading to activation-induced cell death and termination of the immune response. The translation inhibitor, cycloheximide, partially overcomes the apoptosis resistance of short term activated primary human T cells. Using this model we show in this study that sensitization of T cells to apoptosis occurs upstream of mitochondria. Neither death-inducing signaling complex formation nor expression of Bcl-2 proteins is altered in sensitized T cells. Although the caspase-8 inhibitor c-FLIP(long) was only slightly down-regulated in sensitized T cells, c-FLIP(short) became almost undetectable. This correlated with caspase-8 activation and apoptosis. These data suggest that c-FLIP(short), rather than c-FLIP(long), confers resistance of T cells to CD95-mediated apoptosis in the context of immune responses.  相似文献   

12.
The adaptor protein FADD/MORT1 is essential for apoptosis induced by 'death receptors', such as Fas (APO-1/CD95), mediating aggregation and autocatalytic activation of caspase-8. Perhaps surprisingly, FADD and caspase-8 are also critical for mitogen-induced proliferation of T lymphocytes. We generated novel monoclonal antibodies specific for mouse FADD and caspase-8 to investigate whether cellular responses, apoptosis or proliferation, might be explained by differences in post-translational modification and subcellular localisation of these proteins. During both apoptosis signalling and mitogenic activation, FADD and caspase-8 aggregated in multiprotein complexes and formed caps at the plasma membrane but they did not colocalise with lipid rafts. Interestingly, mitogenic stimulation, but not Fas ligation, induced a unique post-translational modification of FADD. These different modifications may determine whether FADD and caspase-8 induce cell death or proliferation.  相似文献   

13.
Fas-associated death domain (FADD) is a common adaptor molecule which plays an important role in transduction of death receptor mediated apoptosis. The FADD provides DED motif for binding to both procaspase-8 and cFLIP molecules which executes death receptor mediated apoptosis. Dysregulated expression of FADD and cFLIP may contribute to inhibition of apoptosis and promote cell survival in cancer. Moreover elevated intracellular level of cFLIP competitively excludes the binding of procaspase-8 to the death effector domain (DED) of FADD at the DISC to block the activation of death receptor signaling required for apoptosis. Increasing evidence shows that defects in FADD protein expression are associated with progression of malignancies and resistance to apoptosis. Therefore, improved expression and function of FADD may provide new paradigms for regulation of cell proliferation and survival in cancer. In the present study, we have examined the potential of FADD in induction of apoptosis by overexpression of FADD in HEK 293T cells and validated further its consequences on the expression of pro and anti-apoptotic proteins besides initiation of death receptor mediated signaling. We have found deficient expression of FADD and elevated expression of cFLIP(L) in HEK 293T cells. Our results demonstrate that over expression of FADD attenuates the expression of anti-apoptotic protein cFLIP and activates the cascade of extrinsic caspases to execution of apoptosis in HEK 293T cells.  相似文献   

14.
Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.  相似文献   

15.
16.
Cellular FLIP long form (c-FLIP(L)) is a caspase-defective homologue of caspase-8 that blocks apoptosis by death receptors. The expression of c-FLIP(L) in T cells can also augment extracellular signal-regulated kinase phosphorylation after TCR ligation via the association of c-FLIP(L) with Raf-1. This contributes to the hyperproliferative capacity of T cells from c-FLIP(L)-transgenic mice. In this study we show that activated CD4(+) T cells from c-FLIP(L)-transgenic mice produce increased amounts of Th2 cytokines and decreased amounts of Th1 cytokines. This correlates with increased serum concentrations of the Th2-dependent IgG1 and IgE. The Th2 bias of c-FLIP(L)-transgenic CD4(+) T cells parallels impaired NF-kappa B activity and increased levels of GATA-3, which contribute, respectively, to decreased IFN-gamma and increased Th2 cytokines. The Th2 bias of c-FLIP(L)-transgenic mice extends to an enhanced sensitivity to OVA-induced asthma. Taken together, these results show that c-FLIP(L) can influence cytokine gene expression to promote Th2-driven allergic reaction, in addition to its traditional role of blocking caspase activation induced by death receptors.  相似文献   

17.
Saito K  Meyer K  Warner R  Basu A  Ray RB  Ray R 《Journal of virology》2006,80(9):4372-4379
We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-alpha-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-alpha exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1beta-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-alpha-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-alpha-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.  相似文献   

18.
The Fas receptor delivers signals crucial for lymphocyte apoptosis through its cytoplasmic death domain. Several Fas cytoplasmic-associated proteins have been reported and studied in cell lines. So far, only Fas-associated death domain protein (FADD), another death domain-containing molecule has been shown to be essential for Fas signals in vivo. FADD is thought to function by recruiting caspase-8 through its death-effector domain. To test whether FADD is sufficient to deliver Fas signals, we generated transgenic mice expressing a chimera comprised of the Fas extracellular domain and FADD death-effector domain. Expression of this protein in lymphocytes of Fas-deficient MRL-lpr/lpr mice completely diminishes their T cell but not their B cell abnormalities. These results suggest that FADD alone is sufficient for initiation of Fas signaling in primary T cells, but other pathways may operate in B cells.  相似文献   

19.
Cycloheximide (CHX) can contribute to apoptotic processes, either in conjunction with another agent (e.g. tumor necrosis factor-alpha) or on its own. However, the basis of this CHX-induced apoptosis has not been clearly established. In this study, the molecular mechanisms of CHX-induced cell death were examined in two different human T-cell lines. In T-cells undergoing CHX-induced apoptosis (Jurkat), but not in T-cells resistant to the effects of CHX (CEM C7), caspase-8 and caspase-3 were activated. However, the Fas ligand was not expressed in Jurkat cells either before or after treatment with CHX, suggesting that the activation of these caspases does not involve the Fas receptor. To determine whether CHX-induced apoptosis was mediated by a Fas-associated death domain (FADD)-dependent mechanism, a FADD-DN protein was expressed in cells prior to CHX treatment. Its expression effectively inhibited CHX-induced cell death, suggesting that CHX-mediated apoptosis primarily involves a FADD-dependent mechanism. Since CHX treatment did not result in the induction of Fas or FasL, and neutralizing anti-Fas and anti-tumor necrosis factor receptor-1 antibodies did not block CHX-mediated apoptosis, these results may also indicate that FADD functions in a receptor-independent manner. Surprisingly, death effector filaments containing FADD and caspase-8 were observed during CHX treatment of Jurkat, Jurkat-FADD-DN, and CEM C7 cells, suggesting that their formation may be necessary, but not sufficient, for cell death.  相似文献   

20.
Breast cancers with HER2 amplification have a poorer prognosis than the luminal phenotypes. TRAIL activates apoptosis upon binding its receptors in some but not all breast cancer cell lines. Herein, we investigated the expression pattern of c-FLIP(L) in a cohort of 251 invasive breast cancer tissues and explored its potential role in TRAIL resistance. C-FLIP(L) was relatively high-expressed in HER2-positive breast cancer in comparison with other molecular subtypes, co-expressed with TRAIL death receptors, and inversely correlated with the apoptosis index. Downregulation of c-FLIP(L) sensitized SKBR3 cells to TRAIL-induced apoptosis in a concentration- and time-dependent manner and enhanced the activities and cleavages of caspase-8 and caspase-3, without altering the surface expression of death receptors. Together, our results indicate that c-FLIP(L) promotes TRAIL resistance and inhibits caspase-3 and caspase-8 activation in HER2-positive breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号