首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary By the use of thin sections and freeze-fracture replicas the glomerular and tubular structures of the kidney of the frog (Rana esculenta) were studied with special reference to intercellular junctions.In the glomerulus the filtration barrier is of very variable thickness, and frequent tight and gap junctional contacts occur between podocyte processes.Although structurally less elaborate, the proximal tubule resembles its mammalian counterpart. In the initial part the tight junctions are relatively shallow but become very broad in the mid and distal portions of the proximal tubule. The proximal tubular cells are extensively linked by gap junctions. In some animals the shapes of the cells in the proximal and distal portions of the proximal tubule were markedly different.The distal tubule consists of two segments which differ mainly in the pattern of interdigitations and the structure of the zonulae occludentes. Similarities with the tight junctional morphology of the mammalian distal tubule are striking. In the first part of the distal tubule (diluting segment) a narrow band of parallel tight junctions is found closely resembling that found in the mammalian straight distal tubule; in the more distal part of the distal tubule, however, a broad band of anastomosing tight junctional strands exists, like the zonula occludens of the mammalian convoluted distal tubule.The connecting tubule displays cellular dimorphism: its wall contains a mixture of light and dark (flask) cells. The luminal and basolateral membranes of the flask cells are covered with numerous rod-shaped particles. The tight junctions of the connecting tubule are broad and increase in depth and number of strands along its length; they are typical of a very tight epithelium.In spite of several dissimilarities with phylogenetically younger kidneys our findings suggest that many structural principles of the mammalian kidney are also represented in the kidneys of amphibians. The structural-functional relationships are discussed.  相似文献   

2.
Summary Transforming growth factor-alpha (TGF-) is a polypeptide related to epidermal growth factor (EGF). Both bind to EGF-receptor (EGF-R) to carry out their function in a variety of tissues and cell lines. Several studies have shown their presence in mammalian kidney, however, nothing has to date been stated concerning their existence in avian kidney. Expression of TGF- and EGF-R is reported here for the first time during the development of the chicken kidney. Using immunohistochemical techniques, we identified a TGF- (but not EGF) in mesonephric distal tubule cells from day 8 to day 20 of embryonic development and in metanephric distal tubule cells from day 14 of embryonic development to the adult. The histochemical characteristics of these cells and their histological localization suggest that they may be the principal cells of the distal tubules. Similarly, EGF-R was found in mesonephric proximal tubule cells from day 7 to day 18 of embryonic development and in metanephric proximal tubule cells from day 13 of embryonic development up to adult stages. The coexistence of both TGF- and EGF-R from the onset of development of mesonephros and metanephros supports their possible role in mechanisms of proliferation and differentiation of the cells of these organs.  相似文献   

3.
Using quantitative cytochemistry, activities of Na, K-ATPase, succinate dehydrogenase (SDH) and alpha-keto-glutarate dehydrogenase (alpha-KDH) was investigated in cells of renal tubules at different levels of sodium reabsorption in the kidney. The activity of these enzymes in mammals and birds renal tubule cells was found to be higher than in the cells of corresponding renal tubules of cold-blooded vertebrates. This corresponds to the increased total amount of reabsorbed sodium in the kidney of warm-blooded animals. The summer frogs, as compared to the winter ones, exhibit higher activities of SDH and Na,K-ATPase in the proximal tubule cells where changes in sodium reabsorption are also noted. In the kidney of marine teleosts, a negative correlation between U/PNa and the activity of SDH and Na,K-ATPase in the cells of proximal and distal tubule was observed. Aldosterone was found to stimulate sodium reabsorption and to activate Na,K-ATPase.SDH and alpha-KDH mainly in the distal convoluted tubule. Furosemide was observed to inhibit sodium reabsorption and to reduce SDH and Na,K-ATPase activities in cells of the proximal tubule and Henle's loop. In the kidney of adrenalectomized rats, both sodium reabsorption and activities of Na,K-ATPase, SDH, alpha-KDH decreased in all the segments of the nephron. The data obtained suggest that changes in sodium reabsorption may be coupled with those in the activities of the investigated enzymes.  相似文献   

4.
甘肃鼢鼠肾结构特征   总被引:1,自引:0,他引:1  
甘肃鼢鼠(Myospalax cansus)在缺水的黄土高原营严格地下生活,主要从食物中摄取水分.为研究甘肃鼢鼠的调水机制,用组织解剖学方法对其肾的形态结构进行观察.结果显示,甘肃鼢鼠肾为单乳头肾,呈蚕豆形,表面光滑,不分叶;皮质与髓质的厚度比为0.71:1;皮质中髓旁肾单位相对分布密度小于浅表肾单位的相对分布密度;髓旁肾单位中的血管球直径大于浅表肾单位中的血管球直径;近曲小管与远曲小管的截面数量比为2.25:1.结果表明,甘肃鼢鼠肾的重吸收能力较小,其组织形态学结构有显著的生态适应意义.  相似文献   

5.
Cell migration and its inhibition was tested by the capillary tube technique with peritoneal exudate cells and spleen cells of chicken, turkey, goose, guinea fowl, and Japanese quail. Peritoneal cells were produced by ip administration of proteose peptone and harvested 24 hr later. Liquid paraffin proved to be unsatisfactory for preparation of peritoneal cells in some avian species. Mononuclear cells represented no more than 50–60% of the peritoneal cell populations, the other 50% being polymorphonuclear cells in all five avian species studied. Cell migration was demonstrated with chicken, turkey, and goose peritoneal and spleen cells, but not with those of guinea fowl and Japanese quail. The composition of the cell populations in the migration areas was nearly the same as in the initial preparations of peritoneal and spleen cells. Spleen cell migration was inhibited to a greater extent than that of peritoneal cells. Migration inhibitory factor (MIF) produced by chicken and turkey lymphocytes exhibited some species specificity.  相似文献   

6.
Proximal and distal tubule suspensions were prepared from kidneys of Sprague-Dawley rats by an isolation procedure on a PercollR gradient. The marker enzymes alkaline phosphatase (brush border) and hexokinase (cytoplasmic) as well as p-aminohippurate transport capacity, gluconeogenic activity and electron microscopy were used to characterize the two kidney tubule suspensions. The results of this study indicate that cytochrome P-450 is localized to the proximal tubular cells and that the O-deethylation of 7- ethoxycoumarin was higher in the proximal than distal fraction. Both proximal and distal tubules showed glucuronidation and deacetylation capacities and a relatively equal distribution of non-protein sulfhydryls. These studies demonstrate metabolic heterogeneity of the nephron, the proximal tubule being the main site of renal xenobiotic metabolism. Understanding of metabolic heterogeneity of proximal and distal kidney tubules should provide important information regarding cell specific mechanisms of nephrotoxicity.  相似文献   

7.
8.
利用光镜组织化学反应对中华鳖肾单位的结构和组织化学特性进行了详细的观察和分析。结果表明,中华鳖肾脏为分叶形的实质器官,肾小叶由被膜和实质组成,实质无髓质和皮质之分,但可以区分为外侧区和内侧区。外侧区嗜酸性,主要分布有近端小管和集合管。内侧区呈弱嗜酸性,肾小体、颈段、中间段和远端小管主要分布在内侧区。肾小球PAS反应呈阳性,但其琥珀酸脱氢酶(SDH)弱阳性,碱性磷酸酶(ALPase)、Na+/K+-ATPase和阿利新兰(AB)反应为阴性。足细胞酸性磷酸酶(ACPase)反应呈阳性。近端小管刷状缘嗜伊红,PAS反应以及ALPase、ACPase和Na+/K+-ATPase酶反应呈阳性,而SDH弱阳性。中间段、远端小管、集合管弱嗜酸性,SDH阳性。中间段Na+/K+-ATPase弱阳性。远端小管细胞侧面呈PAS阳性,腔面显示AB阳性。集合管胞质含有许多ACPase阳性颗粒,腔面呈PAS强阳性,AB阳性。甲苯胺兰(TB)染色可见集合管腔面有阳性颗粒,肾小管上皮含有亮、暗两种细胞。上述组化反应和分布结果表明,鳖的肾小管细胞类型较多,近端小管在原尿的重吸收中起主要作用,远端小管和集合管具有分泌黏液作用。中华鳖肾单位的结构与组化特性不仅与哺乳类和鸟类有一定差异,也与其他爬行动物不完全相同。    相似文献   

9.
Summary The fine structure of the mesonephric kidney of the lamprey, Entosphenus japonicus Martens, has been investigated with the electron microscope and discussed from the viewpoint of comparative morphology of the mesonephros.The structure of the capillary wall of the glomerulus essentially coincides with that of higher vertebrates, though its basement membrane is remarkably thick (300–400 m) because of a dense accumulation of fibrillar material between the endothelium and the basal lamina of epithelial cell. No obvious fenestration of the endothelial cell has been observed in the glomerulus or capillaries in any part of this organ.The kidney tubule is divided into three segments: 1. neck segment composed of ciliated cells with numerous mitochondria and glycogen particles, 2. proximal tubule composed of brush bordered cells provided with extensive pinocytotic vesicles and lysosomal granules in the apical cytoplasm and with lamellar membranes in the basal, and 3. distal tubule characterized by cells which, with their abundant mitochondria and branched tubular endoplasmic reticulum (about 500 Å diameter) with a central core, closely resemble the chloride cells in the gill filament of some teleosts. The possibility that the lamellar membranes in the proximal tubule cells correspond to basal infoldings is discussed.The extensive development of the tubular reticulum and of the mitochondria in the distal tubule cells is believed to reflect the active absorption of urine chloride in the urinary tubule of lamprey mesonephric kidney evidenced by physiologists. The proximal tubule is suggested to take a part also in the urinary transport of water and ions, as the lamellar membranes found in the cells of this portion likely correspond to the basal infoldings in more advanced forms of the kidney.The epithelial cells of the ureteric duct are characterized by granules suggesting a mucous secretion. No fine structure implying an absorptive activity in this duct has been observed.  相似文献   

10.
The histopathological changes induced in avian kidney by the intramuscular injection of Bothrops insularis (jararaca ilh a) venom and its phospholipase A2 (PLA2)-containing fraction were examined. Acute experiments (3 h and 24 h) with B. insularis crude venom (20 microg and 80 microg) or its PLA2-contaning fraction (10 microg and 40 microg) resulted in significant structural damage to the kidneys of 5-12-day-old chicks. Histopathological analysis indicated that the venom and its fraction acted on the renal tubules and glomeruli. The morphological changes, although widespread, varied in intensity from cell to cell, and from tubule to tubule in venom-injected chicks. The tubular and glomerular changes produced by the venom and its PLA2-containing fraction may be the result of a direct cytotoxic effect potentiated by ischemia-related disturbances in the regional hemodynamics. The venom and its fraction affected more segments along reptilian-type nephrons than along mammalian ones. This divergent sensitivity to the venom and its fraction may reflect the species-specific characteristics of B. insularis snake, an example of geographical isolation influencing its diet which is almost exclusively avian.  相似文献   

11.
Structure of the kidney in the crab-eating frog, Rana cancrivora   总被引:1,自引:0,他引:1  
The structure of the nephron in the ranid frog, Rana cancrivora, was studied by light and electron microscopy. This frog is the only amphibian species to live in mangrove swamps of very high salinity. The nephron consists of the following parts: renal corpuscle, ciliated neck segment, proximal tubule, ciliated intermediate segment, distal tubule, connecting tubule, and collecting duct. The distal tubule is located in the ventromedial region of the kidney, and the other tubules are situated in the dorsolateral region. Renal corpuscles are found between the two regions. Some renal corpuscles have a wide Bowman's space because of the small glomerulus within them. The proximal tubules are composed of columnar cells with a dense luminal brush border of long microvilli and numerous apical vesicles and vacuoles. The initial part of the distal tubule consists of heavily interdigitated cells, characterized by a very regular palisade arrangement of mitochondria. In the terminal part of the distal tubule, shorter mitochondria of the infolding cells are situated irregularly around the nucleus. The connecting tubule consists of principal cells and canaliculus cells. The collecting duct consists of columnar or cuboidal cells; cytoplasmic organelles are relatively sparse. The canaliculus cells are intercalated between principal cells from the terminal distal tubule to the proximal part of the collecting duct. Our findings indicate that the kidney of R. cancrivora is structurally similar to kidneys of other amphibians. These findings are discussed with regard to probable correlations between ultrastructure and function in R. cancrivora.  相似文献   

12.
13.
The intraspecific mean length of medullary cones in avian kidneys is analogous to medullary thickness in the mammalian kidney. Hence, relative medullary thickness (based upon kidney volume) can be calculated for birds as was done in mammals years ago. Comparative figures are given for 26 species from nine avian orders. The organizational pattern of cortex and medulla in the bird kidney is reviewed, and a simplified diagram of this relationship is presented. With some exceptions, urine concentrating ability and relative medullary thickness are directly proportional in mammals. Contrarily, no similar trend was evident in birds when current information on water economy was compared to relative medullary thickness in various species. There are a number of factors (such as the respective functional roles of reptilian and mammalian-type nephrons, interspecific variations in ion transport, etc.) which require study before the significance of relative thickness in the avian medulla can be evaluated more thoroughly.  相似文献   

14.
A histochemical investigation of kidney and lower intestine of the European starling (Sturnus vulgaris) shows no carbonic anhydrase activity in proximal convoluted tubules, although activity is seen in similarly prepared sections of rat proximal tubules. Early distal tubule cells in the starling are stained throughout the cytoplasm and at the apical and highly infolded basolateral membranes. Late distal tubules lose apical activity and have reduced basolateral infolding, resulting in less intense staining. Darkly stained intercalated cells appear in the connecting tubules and cortical collecting ducts. Both of these segments also show intense basolateral staining. Medullary cones of the starling are highly organized, with central zones containing unstained thin descending limbs of loops of Henle, surrounded by both medullary collecting ducts with only scattered cells staining for enzyme, and by thick ascending limb segments. The latter contain many uniformly stained cells intermingled with occasional unstained cells. Scattered cells of the starling colonic villi demonstrate intense apical brush border membrane staining as well as cytoplasmic staining. Cells lining the cloaca stain less intensely. A biochemical assay for carbonic anhydrase was used to quantify enzyme activity in these tissues. Starling kidney contained 1.96 ± 0.33 (mean ± SEM) enzyme units/mg protein, less than half the activity seen in rat kidney. Stripped colonic epithelium contained 0.66 ± 0.15 enzyme units/mg protein. These quantitative results correlate well with the interpretations derived from the histochemical observations. The lack of proximal tubule carbonic anhydrase activity suggests that the avian kidney relies more on distal nephron segments to achieve net acidification of the urine.  相似文献   

15.
16.
Male salamanders use nephrons from the genital kidney to transport sperm from the testicular lobules to the Wolffian duct. The microstructure of the epithelia of the genital kidney proximal tubule and distal tubule was studied over 1 year in a population of Notophthalmus viridescens from Crawford and Pike counties in central Missouri. Through ultrastructural analysis, we were able to support the hypothesis that the genital kidney nephrons are modified to aid in the transportation of sperm. A lack of folding of the basal plasma membrane, in both the genital kidney proximal and distal tubules when compared to the pelvic kidney proximal and distal tubules, reduces the surface area and thus likely decreases the efficiency of reabsorption in these nephron regions of the genital kidney. Ciliated epithelial cells are also present along the entire length of the genital kidney proximal tubule, but are lacking in the epithelium of the pelvic kidney proximal tubule. The exact function of these cilia remains unknown, but they may aid in mixing of seminal fluids or the transportation of immature sperm through the genital kidney nephrons. Ultrastructural analysis of proximal and distal tubules of the genital kidney revealed no seasonal variation in cellular activity and no mass production of seminal fluids throughout the reproductive cycle. Thus, we failed to support the hypothesis that the cellular activity of the epithelia lining the genital kidney nephrons is correlated to specific events in the reproductive cycle. The cytoplasmic contents and overall structure of the genital and pelvic kidney epithelial cells were similar to recent observations in Ambystoma maculatum, with the absence of abundant dense bodies apically in the epithelial cells lining the genital kidney distal tubule. J. Morphol. 275:914–922, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Summary In a light microscopic study the course of the tubule in the kidney of the toadBufo bufo was studied. The distal tubule returning to the glomerulus of its origin appears to enclose the afferent arteriole. In that area, from which a three dimensional graphic reconstruction is made, there is an intimate contact between tubular and vascular wall. The latter contains granulated media cells. In the part of the tubule adjacent to the afferent arteriole an accumulation of nuclei is present. It is suggested that this structure is similar to the macula densa of the mammalian juxtaglomerular apparatus. The functional significance of a stricture in the tubule distally from the macula densa-like structure is discussed.The authors wish to thank Mrs. Ineke van de Mee-Wienen and Miss Ans Rouwenhorst for their technical assistance and Mr. J. J. M. de Bekker for the realization of the graphic reconstruction.  相似文献   

18.
Serum and glucocorticoid-regulated kinase 2 (sgk2) is 80% identical to the kinase domain of sgk1, an important mediator of mineralocorticoid-regulated sodium (Na(+)) transport in the distal nephron of the kidney. The expression pattern and role in renal function of sgk2 are virtually uncharacterized. In situ hybridization and immunohistochemistry of rodent kidney coupled with real-time RT-PCR of microdissected rat kidney tubules showed robust sgk2 expression in the proximal straight tubule and thick ascending limb of the loop of Henle. Sgk2 expression was minimal in distal tubule cells with aquaporin-2 immunostaining but significant in proximal tubule cells with Na(+)/H(+) exchanger 3 (NHE3) immunostaining. To ascertain whether mineralocorticoids regulate expression of sgk2 in a manner similar to sgk1, we examined sgk2 mRNA expression in the kidneys of adrenalectomized rats treated with physiological doses of aldosterone together with the glucocorticoid receptor antagonist RU486. Northern blot analysis and in situ hybridization showed that, unlike sgk1, sgk2 expression in the kidney was not altered by aldosterone treatment. Based on the observation that sgk2 is expressed in proximal tubule cells that also express NHE3, we asked whether sgk2 regulates NHE3 activity. We heterologously expressed sgk2 in opossum kidney (OKP) cells and measured Na(+)/H(+) exchange activity by Na(+)-dependent cell pH recovery. Constitutively active sgk2, but not sgk1, stimulated Na(+)/H(+) exchange activity by >30%. Moreover, the sgk2-mediated increase in Na(+)/H(+) exchange activity correlated with an increase in cell surface expression of NHE3. Together, these results suggest that the pattern of expression, regulation, and role of sgk2 within the mammalian kidney are distinct from sgk1 and that sgk2 may play a previously unrecognized role in the control of transtubular Na(+) transport through NHE3 in the proximal tubule.  相似文献   

19.
Using primers against conserved regions of mammalian Na(+)-d-glucose cotransporters (SGLT), a cDNA was cloned from the kidney of spiny dogfish shark (Squalus acanthias). On the basis of comparison of amino acid sequence, membrane topology, and putative glycosylation and phosphorylation sites, the cDNA could be shown to belong to the family of sglt genes. Indeed, Na(+)-dependent d-glucose uptake could be demonstrated after expression of the gene in Xenopus laevis oocytes. In a dendrogram, the SGLT from shark kidney has a high homology to the mammalian SGLT2. Computer analysis revealed that the elasmobranch protein is most similar to the mammalian proteins in the transmembrane regions and contains already all the amino acids identified to be functionally important, suggesting early conservation during evolution. Extramembraneous loops show larger variations. This holds especially for loop 13, which has been implied as a phlorizin-binding domain. Antibodies were generated and the intrarenal distribution of the SGLT was studied in cryosections. In parallel, the nephron segments were identified by lectins. Positive immunoreactions were found in the proximal tubule in the early parts PIa and PIb and the late segment PIIb. The large PIIa segment of the proximal tubule showed no reaction. In contrast to the mammalian kidney also the late distal tubule, the collecting tubule, and the collecting duct showed immunoreactivity. The molecular information confirms previous vesicle studies in which a low affinity SGLT with a low stoichiometry has been observed and supports the notion of a similarity of the shark kidney SGLT to the mammalian SGLT2. Despite its presence in the late parts of the nephron, the absence of SGLT in the major part of the proximal tubule, the relatively low affinity, and in particular the low stoichiometry might explain the lack of a T(m) for d-glucose in the shark kidney.  相似文献   

20.
Magnesium is abundant in biological systems and an important divalent cation in the human body. Mg2+ helps mediate cellular energy metabolism, ribosomal and membrane integrity. Additionally Mg2+ modulates the activity of several membrane transport and signal transduction systems. Despite its importance however, little is known about the molecular mechanisms of Mg2+ transport and homeostasis in mammals. In mammals the amount of Mg2+ absorption is about the same as the amount of Mg2+ excretion in urine. Additionally, when total Mg2+ intake is deficient, the kidney is capable of reabsorbing all filtered Mg2+. This balance between intake and excretion indicates that the kidney plays a principal role in maintenance of total body Mg2+ homeostasis. Within the kidney, Mg2+ filtered by the glomerulus is handled in different ways along the nephron. About 10-20% of Mg2+ is reabsorbed by the proximal tubule. the bulk of Mg2+ (about 50-70%) is reabsorbed by the cortical thick ascending limb of the loop of Henle. In this region, Mg2+ moves across the epithelium through the paracellular pathway, driven by the positive lumenal transepithelial voltage. A recently cloned human gene, paracellin-1 was shown to encode a protein localized to the tight junctions of the cortical thick ascending limb and is thought to mediate Mg2+ transport via the paracellular space of this epithelium. The distal convoluted tubule reabsorbs the remaining 5-10% of filtered Mg2+. This segment seems to play an important role in determining final urinary excretion, since there is no evidence for significant Mg2+ absorption beyond the distal tubule. Although many renal Mg2+ transport activities have been characterized, no Mg2+ transporter cDNAs have been cloned from mammalian tissues. Recent research has certainly expanded our knowledge of Mg2+ transport in kidney; but details of the transport processes and the mechanisms by which they control Mg2+ excretion must await cloning of renal Mg2+ transporters and/or channels. Such information would provide new concepts in our understanding of renal Mg2+ handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号