首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The binding of carbon monoxide, a competitive inhibitor of many hydrogenases, to the active site of Desulfovibrio fructosovorans hydrogenase has been studied by infrared spectroscopy in a spectroelectrochemical cell. Direct evidence has been obtained of which redox states of the enzyme can bind extrinsic CO. Redox states A, B and SU do not bind extrinsic CO; only after reductive activation of the hydrogenase can CO bind to the active site. Two states with bound extrinsic CO can be distinguished by FTIR. These two states are in redox equilibrium and are most probably due to different oxidation states of the proximal 4Fe-4S cluster. Vibrational frequencies and theoretical quantum mechanics studies (DFT) of this process preclude the possibility of strong bonding of extrinsic CO to the Fe or Ni atoms of the active site. We propose that CO inhibition is caused by weak interaction of the extrinsic ligand with the Ni atom, blocking electron and proton transfer at the active site. A calculated structure with a weakly bound extrinsic CO at Ni has relative CO frequencies in excellent agreement with the experimental ones.  相似文献   

2.
Li SJ 《Biopolymers》2006,81(2):74-80
Metal binding to lysozyme has received wide interest. In particular, it is interesting that Ni2+, Mn2+, Co2+, and Yb3+ chloride salts induce an increase in the solubility of the tetragonal form in crystals of hen egg white lysozyme at high salt concentration, but that Mg2+ and Ca2+ chloride salts do not. To investigate the interactions of the di- and trivalent metal ions with the active site of lysozyme and compare the effects of the di- and trivalent metal ions on molecular conformation of lysozyme based on the structural analysis, the crystal structures of hen egg white lysozyme grown at pH 4.6, in the presence of 0.5 M MgCl2, CaCl2, NiCl2, MnCl2, CoCl2, and YbCl3, have been determined by X-ray crystallography at 1.58 A resolution. The crystals grown in these salts have an identical space group, P4(3)2(1)2. The molecules show no conformational changes, irrespective of the salts used. Ni2+ and Co2+ binding to the Odelta atom of Asp52 in the active site at 1.98 and 2.02 A, respectively, and Yb3+ binding to both the Odelta atom of Asp52 and the Odelta1 atom of Asn46 at 2.25 A have been identified. The binding sites of Mn2+, Mg2+, and Ca2+ have not been found from different Fourier electron density maps. The Ni2+ and Co2+ ions bind to the Odelta atom of Asp52 at almost the same position, while the Yb3+ ion takes a different position from the Ni2+ and Co2+ ions. On the other hand, the anion Cl-, interacting with the Oeta atom of Tyr23 at a site of about 2.90 A, has also been determined for each crystal.  相似文献   

3.
The structure of Bacillus pasteurii urease inhibited with acetohydroxamic acid was solved and refined anisotropically using synchrotron X-ray cryogenic diffraction data (1.55 A resolution, 99.5% completeness, data redundancy = 26, R-factor = 15.1%, PDB code 4UBP). The two Ni ions in the active site are separated by a distance of 3.53 A. The structure clearly shows the binding mode of the inhibitor anion, symmetrically bridging the two Ni ions in the active site through the hydroxamate oxygen and chelating one Ni ion through the carbonyl oxygen. The flexible flap flanking the active site cavity is in the open conformation. The possible implications of the results on structure-based molecular design of new urease inhibitors are discussed.  相似文献   

4.
OpdA is a binuclear metalloenzyme that can hydrolyze organophosphate pesticides and nerve agents. In this study the crystal structure of the complex between OpdA and phosphate has been determined to 2.20 Å resolution. The structure shows the phosphate bound in a tripodal mode to the metal ions whereby two of the oxygen atoms of PO4 are terminally bound to each metal ion and a third oxygen bridges the two metal ions, thus displacing the μOH in the active site. In silico modelling demonstrates that the phosphate moiety of a reaction product, e.g. diethyl phosphate, may bind in the same orientation, positioning the diethyl groups neatly into the substrate binding pocket close to the metal center. Thus, similar to the binuclear metallohydrolases urease and purple acid phosphatase the tripodal arrangement of PO4 is interpreted in terms of a role of the μOH as a reaction nucleophile.  相似文献   

5.
The three-dimensional structure of the complex of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, CO2, Mg2+, and ribulose bisphosphate has been determined with x-ray crystallographic methods to 2.6-A resolution. Ribulose-1,5-bisphosphate binds across the active site with the two phosphate groups in the two phosphate binding sites of the beta/alpha barrel. The oxygen atoms of the carbamate and the side chain of Asp-193 provide the protein ligands to the bound Mg2+ ion. The C2 and the C3 or C4 oxygen atoms of the substrate are also within the first coordination sphere of the metal ion. At the present resolution of the electron density maps, two slightly different conformations of the substrate, with the C3 hydroxyl group "cis" or "trans" to the C2 oxygen, can be built into the observed electron density. The two different conformations suggest two different mechanisms of proton abstraction in the first step of catalysis, the enolization of the ribulose 1,5-bisphosphate. Two loop regions, which are disordered in the crystals of the nonactivated enzyme, could be built into their respective electron density. A comparison with the structure of the quaternary complex of the spinach enzyme shows that despite the different conformations of loop 6, the positions of the Mg2+ ion, and most atoms of the substrate are very similar when superimposed on each other. There are, however, some significant differences at the active site, especially in the metal coordination sphere.  相似文献   

6.
The structure of β-mercaptoethanol-inhibited urease from Bacillus pasteurii, a highly ureolytic soil micro-organism, was solved at 1.65?Å using synchrotron X-ray cryogenic diffraction data. The structure clearly shows the unexpected binding mode of β-mercaptoethanol, which bridges the two nickel ions in the active site through the sulfur atom and chelates one Ni through the OH functionality. Another molecule of inhibitor forms a mixed disulfide with a Cys residue, thus sealing the entrance to the active site cavity by steric hindrance. The possible implications of the results on structure-based molecular design of new urease inhibitors are discussed.  相似文献   

7.
Giri NC  Sun H  Chen H  Costa M  Maroney MJ 《Biochemistry》2011,50(22):5067-5076
Human ABH2 repairs DNA lesions by using an Fe(II)- and αKG-dependent oxidative demethylation mechanism. The structure of the active site features the facial triad of protein ligands consisting of the side chains of two histidine residues and one aspartate residue that is common to many non-heme Fe(II) oxygenases. X-ray absorption spectroscopy (XAS) of metallated (Fe and Ni) samples of ABH2 was used to investigate the mechanism of ABH2 and its inhibition by Ni(II) ions. The data are consistent with a sequential mechanism that features a five-coordinate metal center in the presence and absence of the α-ketoglutarate cofactor. This aspect is not altered in the Ni(II)-substituted enzyme, and both metals are shown to bind the cofactor. When the substrate is bound to the native Fe(II) complex with α-ketoglutarate bound, a five-coordinate Fe(II) center is retained that features an open coordination position for O(2) binding. However, in the case of the Ni(II)-substituted enzyme, the complex that forms in the presence of the cofactor and substrate is six-coordinate and, therefore, features no open coordination site for oxygen activation at the metal.  相似文献   

8.
Pyridoxal-5'-phosphate (PLP) is widely used by many enzymes in reactions where amino acids are interconverted. Whereas the role of the pyridoxal ring in catalysis is well understood, the functional role of the single phosphate group in PLP has been less studied. Here we construct unambiguous connection diagrams that describe the interactions among the three non-ester phosphate oxygen atoms of PLP and surrounding atoms from the protein binding site and from water molecules, the so-called phosphate group binding "cup". These diagrams provide a simple means to identify common recognition motifs for the phosphate group in both similar and different protein folds. Diagrams were constructed and compared in the cases of five newly determined structures of PLP-dependent transferases (fold type I enzymes) and, additionally, two non-PLP protein complexes (indole-3-glycerol phosphate synthase (IGPS) with bound indole-3-glycerol phosphate (IGP) and old yellow enzyme (OYE) with bound flavin mononucleotide (FMN)). A detailed comparison of the diagrams shows that three positions out of ten in the structure of the phosphate group binding "cup" contain invariant atoms, while seven others are occupied by conserved atom types. This level of similarity was also observed in the fold type III (TIM beta/alpha-barrel) enzymes that bind three different ligands: PLP, IGP and FMN.  相似文献   

9.
Controversy surrounds the metal-dependent mechanism of H-N-H endonucleases, enzymes involved in a variety of biological functions, including intron homing and DNA repair. To address this issue we determined the crystal structures for complexes of the H-N-H motif containing bacterial toxin colicin E9 with Zn(2+), Zn(2+).DNA, and Mg(2+).DNA. The structures show that the rigid V-shaped architecture of the active site does not undergo any major conformational changes on binding to the minor groove of DNA and that the same interactions are made to the nucleic acid regardless of which metal ion is bound to the enzyme. The scissile phosphate contacts the single metal ion of the motif through distortion of the DNA brought about by the insertion of the Arg-96-Glu-100 salt bridge into the minor groove and a network of contacts to the DNA phosphate backbone that straddle the metal site. The Mg(2+)-bound structure reveals an unusual coordination scheme involving two H-N-H histidine residues, His-102 and His-127. The mechanism of DNA cleavage is likely related to that of other single metal ion-dependent endonucleases, such as I-PpoI and Vvn, although in these enzymes the single alkaline earth metal ion is coordinated by oxygen-bearing amino acids. The structures also provide a rationale as to why H-N-H endonucleases are inactive in the presence of Zn(2+) but active with other transition metal ions such as Ni(2+). This is because of coordination of the Zn(2+) ion through a third histidine, His-131. "Active" transition metal ions are those that bind more weakly to the H-N-H motif because of the disengagement of His-131, which we suggest allows a water molecule to complete the catalytic cycle.  相似文献   

10.
The two Ni2+ ions in the urease active site are delivered by the metallochaperone UreE, whose metal binding properties are central to the assembly of this metallocenter. Isothermal titration calorimetry (ITC) has been used to quantify the stoichiometry, affinity, and thermodynamics of Ni2+, Cu2+, and Zn2+ binding to the well-studied C-terminal truncated H144*UreE from Klebsiella aerogenes, Ni2+ binding to the wild-type K. aerogenes UreE protein, and Ni2+ and Zn2+ binding to the wild-type UreE protein from Bacillus pasteurii. The stoichiometries and affinities obtained by ITC are in good agreement with previous equilibrium dialysis results, after differences in pH and buffer competition are considered, but the concentration of H144*UreE was found to have a significant effect on metal binding stoichiometry. While two metal ions bind to the H144*UreE dimer at concentrations <10 microM, three Ni2+ or Cu2+ ions bind to 25 microM dimeric protein with ITC data indicating sequential formation of Ni/Cu(H144*UreE)4 and then (Ni/Cu)2(H144*UreE)4, or Ni/Cu(H144*UreE)2, followed by the binding of four additional metal ions per tetramer, or two per dimer. The thermodynamics indicate that the latter two metal ions bind at sites corresponding to the two binding sites observed at lower protein concentrations. Ni2+ binding to UreE from K. aerogenes is an enthalpically favored process but an entropically driven process for the B. pasteurii protein, indicating chemically different Ni2+ coordination to the two proteins. A relatively small negative value of DeltaCp is associated with Ni2+ and Cu2+ binding to H144*UreE at low protein concentrations, consistent with binding to surface sites and small changes in the protein structure.  相似文献   

11.
UreE is a homodimeric metallo-chaperone that assists the insertion of Ni(2+) ions in the active site of urease. The crystal structures of UreE from Bacillus pasteurii and Klebsiella aerogenes have been determined, but the details of the nickel-binding site were not elucidated due to solid-state effects that caused disorder in a key portion of the protein. A complementary approach to this problem is described here. Titrations of wild-type Bacillus pasteurii UreE (BpUreE) with Ni(2+), followed by metal ion quantitative analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), established the binding of 2 Ni(2+) ions to the functional dimer, with an overall dissociation constant K(D) = 35 microM. To establish the nature, the number, and the geometry of the ligands around the Ni(2+) ions in BpUreE-Ni(2), X-ray absorption spectroscopy data were collected and analyzed using an approach that combines ab initio extended X-ray absorption fine structure (EXAFS) calculations with a systematic search of several possible coordination geometries, using the Simplex algorithm. This analysis indicated the presence of Ni(2+) ions in octahedral coordination geometry and an average of two histidine residues and four O/N ligands bound to each metal ion. The fit improved significantly with the incorporation, in the model, of a Ni-O-Ni moiety, suggesting the presence of a hydroxide-bridged dinuclear cluster in the Ni-loaded BpUreE. These results were interpreted using two possible models. One model involves the presence of two identical metal sites binding Ni(2+) with negative cooperativity, with each metal ion bound to the conserved His(100) as well as to either His(145) or His(147) from each monomer, residues found largely conserved at the C-terminal. The alternative model comprises the presence of two different binding sites featuring different affinity for Ni(2+). This latter model would involve the presence of a dinuclear metallic core, with one Ni(2+) ion bound to one His(100) from each monomer, and the second Ni(2+) ion bound to a pair of either His(145) or His(147). The arguments in favor of one model as compared to the other are discussed on the basis of the available biochemical data.  相似文献   

12.
 The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to function in Ni(II) delivery to the urease apoprotein. Wild-type UreE contains a histidine-rich region at its carboxyl terminus and binds 5–6 Ni per dimer, whereas the functionally active but truncated H144*UreE lacks the histidine-rich motif and binds only two Ni per dimer [Brayman TG, Hausinger RP (1996) J Bacteriol 178 : 5410-5416]. For both proteins, Cu(II), Co(II), and Zn(II) ions compete for the Ni-binding sites. In order to characterize the coordination environments of bound metals, especially features that are unique to Ni, the Ni-, Cu-, and Co-bound forms of H144*UreE were studied by a combination of EPR, ESEEM, hyperfine-shifted 1H-NMR, XAS, and RR spectroscopic methods. For each metal ion, the two binding sites per homodimer were spectroscopically distinguishable. For example, the two Ni-binding sites each have pseudo-octahedral geometry in an N/O coordination environment, but differ in their number of histidine donors. The two Cu-binding sites have tetragonal geometry with two histidine donors each; however, the second Cu ion is bound by at least one cysteine donor in addition to the N/O-type donors found for the first Cu ion. Two Co ions are bound to H144*UreE in pseudo-octahedral geometry with N/O coordination, but the sites differ in the number of histidine donors that can be observed by NMR. The differences in coordination for each type of metal ion are relevant to the proposed function of UreE to selectively facilitate Ni insertion into urease in vivo. Received: 8 October 1997 / Accepted: 30 December 1997  相似文献   

13.
X-ray crystal structures of two non-nucleoside analogue inhibitors bound to hepatitis C virus NS5B RNA-dependent RNA polymerase have been determined to 2.0 and 2.9 A resolution. These noncompetitive inhibitors bind to the same site on the protein, approximately 35 A from the active site. The common features of binding include a large hydrophobic region and two hydrogen bonds between both oxygen atoms of a carboxylate group on the inhibitor and two main chain amide nitrogen atoms of Ser(476) and Tyr(477) on NS5B. The inhibitor-binding site lies at the base of the thumb domain, near its interface with the C-terminal extension of NS5B. The location of this inhibitor-binding site suggests that the binding of these inhibitors interferes with a conformational change essential for the activity of the polymerase.  相似文献   

14.
Yeast inorganic pyrophosphatase was found to bind two Mn2+ per subunit in the absence of phosphate and three Mn2+ per subunit in the presence of phosphate. Kinetic studies of the pyrophosphatase-catalyzed hydrolysis of Cr(NH3)4PP and Cr(H2O)4PP were carried out with Mn2+ and with Mg2+ as activators. The results from these studies suggest that three divalent cations per pyrophosphatase active site are required for catalysis. NMR and EPR studies were conducted to evaluate the relative location of the metal ion binding sites on the enzyme. The two Mn2+ ions bound to the free enzyme are in close enough proximity to magnetically interact. Analysis of the NMR and EPR data in terms of a dipolar relaxation mechanism between Mn2+ ions provides an estimate of the distance between them of 10-14 A. When the diamagnetic substrate analog [Co(NH3)4PNP]- or intermediate analog [Co(NH3)4 (P)2]- are bound to pyrophosphatase, two Mn2+ ions still bind to the enzyme and their magnetic interaction increases. In the presence of these Co3+ complexes, the Mn2+--Mn2+ separation decreases to 7-9 A. Several NMR and EPR experiments were conducted at low Mn2+ to pyrophosphatase ratios (approximately 0.3), where only one Mn2+ ion binds per subunit, in the presence of Cr3+ or Co3+ complexes of PNP or PP. Analysis of the Mn2+--Cr3+ dipolar relaxation evident in proton NMR and EPR data provided for the calculation of Mn2+--Cr3+ distances. When the substrate analog CrPNP was present, the Mn2+--Cr3+ distance was congruent to 7 A whereas, when Cr(P)2 was bound to pyrophosphatase, the Mn2+--Cr3+ distance was congruent to 5 A. These results strongly support a model for the catalytic site of pyrophosphatase that involves three metal ion cofactors.  相似文献   

15.
Pang YP 《Proteins》2001,45(3):183-189
I report herein two 2.0 ns (1.0 fs time step) MD simulations of two zinc complexes bridged by a hydroxide in phosphotriesterase (PTE) employing the nonbonded method and the cationic dummy atom method that uses virtual atoms to impose orientational requirement for zinc ligands. The cationic dummy atom method was able to simulate the four-ligand coordination of the two zinc complexes in PTE. The distance (3.39 +/- 0.07A) between two nearby zinc ions in the time-average structure of PTE derived from the MD simulation using the cationic dummy atoms matched that in the X-ray structure (3.31 +/- 0.001A). Unequivocally, the time-average structure of PTE was able to fit into the experimentally determined difference electron density map of the corresponding X-ray structure. The results demonstrate the practicality of the cationic dummy atom method for MD simulations of zinc proteins bound with multiple zinc ions. In contrast, a 2.0 ns (1.0 fs time step) MD simulation using the nonbonded method revealed a striking difference in the active site between the X-ray structure and the time-average structure that was unable to fit into the density map of PTE. The results suggest that caution should be used in the MD simulations using the nonbonded method.  相似文献   

16.
In order to model the active site of urease which contains two nickel ions with differing coordination geometries new parameters were derived for the AMBER* force field. These parameters were obtained by structure based optimization and use a single set of parameters with points on a sphere approach to model nickel(II) high-spin in all its coordination geometries. The force field was successfully used to model the active site of urease and to predict that a bridging water between the two nickel ions in urease was missing from the solid state structure of urease. A thorough conformational search was undertaken to find the conformations available to urea within urease. All the low energy conformations found were used to determine a consensus urea binding model.  相似文献   

17.
G H Reed  T S Leyh 《Biochemistry》1980,19(24):5472-5480
The complete coordination scheme for Mn(II) in transition-state-analogue complexes with creatine kinase has been determined by electron paramagnetic resonance (EPR) spectroscopy. Perturbations in the EPR spectra for Mn(II) due to superhyperfine coupling to 17O of selectively labeled ligands have been used to identify oxygen ligands in the first coordination sphere of the metal ion. The results show that in the complex of enzyme-MnADP-formate-creatine, Mn(II) is bound to oxygen ligands from both the alpha- and beta-phosphate groups of ADP, to an oxygen from the carboxylate group of formate, and to three water molecules. In the complex with thiocyanate replacing formate as the stabilizing anion, previous infrared experiments [Reed, G. H., Barlow, C. H., & Burns, R. A., Jr. (1978) J. Biol. Chem. 253, 4153-4158] indicated that the nitrogen from thiocyanate was bound to the Mn(II). The magnitudes of the 17O superphyperfine coupling constants from the O- ligands of the ADP phosphate groups and from the formate carboxylate are approximately equal and are larger than that for the water ligands. The symmetry of the zero-field-splitting tensor for Mn(II) indicates that the oxygens from the alpha- and beta-phosphate groups of ADP and the ligand donor atom from the anion occupy mutually cis positions in the octahedral coordination geometry. Water proton relaxation time measurements show that the three water molecules which are bound to Mn(II) are not in free exchange with the bulk solvent. Hence, an enclosed structure at the active site is indicated. The results suggest that for creatine kinase the activating metal ion is bound to all three phosphate groups in the transition state of the reaction.  相似文献   

18.
BACKGROUND: Phytases hydrolyze phytic acid (myo-inositol-hexakisphosphate) to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are used in animal feed to reduce phosphate pollution in the environment. Recently, a thermostable, calcium-dependent Bacillus phytase was identified that represents the first example of the beta propeller fold exhibiting phosphatase activity. We sought to delineate the catalytic mechanism and property of this enzyme. RESULTS: The crystal structure of the enzyme in complex with inorganic phosphate reveals that two phosphates and four calcium ions are tightly bound at the active site. Mutation of the residues involved in the calcium chelation results in severe defects in the enzyme's activity. One phosphate ion, chelating all of the four calcium ions, is close to a water molecule bridging two of the bound calcium ions. Fluoride ion, which is expected to replace this water molecule, is an uncompetitive inhibitor of the enzyme. The enzyme is able to hydrolyze any of the six phosphate groups of phytate. CONCLUSIONS: The enzyme reaction is likely to proceed through a direct attack of the metal-bridging water molecule on the phosphorous atom of a substrate and the subsequent stabilization of the pentavalent transition state by the bound calcium ions. The enzyme has two phosphate binding sites, the "cleavage site", which is responsible for the hydrolysis of a substrate, and the "affinity site", which increases the binding affinity for substrates containing adjacent phosphate groups. The existence of the two nonequivalent phosphate binding sites explains the puzzling formation of the alternately dephosphorylated myo-inositol triphosphates from phytate and the hydrolysis of myo-inositol monophosphates.  相似文献   

19.
The structure of a triclinic complex between liver alcohol dehydrogenase, reduced coenzyme NADH, and the inhibitor dimethylsulfoxide has been determined to 2.9 Å resolution using isomorphous replacement methods. The heavy-atom positions were derived by molecular replacement methods using phase angles derived from a model of the orthorhombic apoenzyme structure previously determined to 2.4 Å resolution. A model of the present holoenzyme molecule was built on a Vector General 3400 display system using the RING system of programs. This model gave a crystallographic R-value of 37.9%.There are extensive conformational differences between the protein molecules in the two forms. The conformational change involves a rotation of 7.5 ° of the catalytic domains relative to the coenzyme binding domains. A hinge region for this rotation is defined within a hydrophobic core between two helices. The internal structures of the domains are preserved with the exception of a movement of a small loop in the coenzyme binding domain. A cleft between the domains is closed by this coenzyme-induced conformational change, making the active site less accessible from solution and thus more hydrophobic.The two crystallographically independent subunits are very similar and bind both coenzyme and inhibitor in an identical way within the present limits of error. The coenzyme molecule is bound in an extended conformation with the two ends in hydrophobic crevices on opposite sides of the central pleated sheet of the coenzyme binding domain. There are hydrogen bonds to oxygen atoms of the ribose moities from Asp223, Lys228 and His51. The pyrophosphate group is in contact with the side-chains of Arg47 and Arg369.No new residues are brought into the active site compared to the apoenzyme structure. The active site zinc atom is close to the hinge region, where the smallest structural changes occur. Small differences in the co-ordination geometry of the ligands Cys46, His67 and Cysl74 are not excluded and may account for the ordered mechanism. The oxygen atom of the inhibitor dimethylsulfoxide is bound directly to zinc confirming the structural basis for the suggested mechanism of action based on studies of the apoenzyme structure.  相似文献   

20.
Crystal structures of the enzyme creatine amidinohydrolase (creatinase, EC 3.5.3.3) with two different inhibitors, the reaction product sarcosine and the substrate creatine, bound have been analyzed by X-ray diffraction methods. With the inhibitor carbamoyl sarcosine, two different crystal forms at different pH values have been determined. An enzymatic mechanism is proposed on the basis of the eight structures analyzed. The enzyme binds substrate and inhibitor in a distorted geometry where the urea resonance is broken. His232 is the general base and acid, and acts as a proton shuttle. It withdraws a proton from water 377 and donates it to the N(3) atom of the guanidinium group. OH- 377 adds to the C(1) atom of the guanidinium group to form a urea hydrate. Proton withdrawal by His232 leads to products. The reaction product sarcosine binds to the active site in a reverse orientation. The free enzyme was found to have a bicarbonate bound to the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号