首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent data on the effect of serine proteinases of lower vertebrates are generalized. Hydrolysis specificity and kinetics of different synthetic substrates, dependence of the activity of enzymes on pH, their irreversible inhibition by chloromethyl ketones of amino acids and peptides as well as high-molecular proteinase inhibitors are considered in detail. The data testify to the fact that chymotrypsins and trypsins of higher vertebrates and serine proteinases of lower vertebrates act as an acid-base catalysis. Enzymes in the pyloric cacca of fishes are in the state of proenzymes and are transformed into an active form with the aid of their own proteolytic factors. The esterase and proteolytic activity of fish proteinases is concentrated in the same active site and reaches the highest values at pH 7,8. New data are presented on particularities of the lower vertebrate proteinases, on the similarity and differences in their specificity. A distinct difference is shown in the nature of the binding site of the active centre in a number of serine proteinases of fishes as compared to chymotrypsin and trypsin of higher vertebrates.  相似文献   

2.
The serine proteinase from B. licheniformis was purified by affinity chromatography on the sorbent obtained by attachment of p-(omega-aminomethyl)-phenylboronic acid via an amino group to CH-Sepharose. The use of this sorbent specific to the serine proteinases active sites resulted in a 35-fold purification of the enzyme with an apparent activity yield of 288%. Such a high activity yield is due to a removal of the enzyme inhibitors. The N-terminal sequence of B. licheniformis extracellular serine proteinase traced for 35 amino acid residues coincides with that of subtilisin Carlberg, a serine proteinase presumed to be secreted by a B. subtilis strain. Since the amino acid composition as well as the functional properties of these two enzymes did not reveal any noticeable differences, it was assumed that both proteinases are very similar, if not identical. This conclusion leads to reconsideration of the existing concept on an extremely fast rate of subtilisin evolution. Three multiple forms of B. licheniformis extracellular serine proteinase were found to differ only in their net charges, presumably as a result of partial deamidation of Asn or Gln residues within their structure.  相似文献   

3.
4.
Summary Recent studies on the interaction of several proteinases (pepsin, papain, chymotrypsin, trypsin, thermolysin) with specific substrates or inhibitors bearing a fluorescent probe group have shown that the extended active sites of these enzymes differ in their conformational flexibility. In addition the use of such extrinsic probe groups, measurements of changes in the intrinsic tryptophan fluorescence, and of the energy transfer from tryptophan to a probe group, have given further information about the flexibility of the active sites of proteinases.  相似文献   

5.
Results of the comparative study of trypsin- and chymotrypsin-like serine proteases from pyloric caeca of salmon fishes and trypsin and chymotrypsin of bulls are presented in the paper. The hydrolytic activity of salmon proteases with respect to methyl ethers of N-benzoyl-L-leucine is 2.4 times higher than that of bull chymotrypsin, but with respect to methyl esters of N-benzoyl-L-tyrosine and N-benzoyl-L-arginine the activity of salmon proteases is 6.5 and 80 times lower than that of bull chymotrypsin and trypsin. Salmon proteases in contrast to bull trypsin and chymotrypsin hydrolyze but slightly N-glutaryl-L-phenylalanine para-nitroanilide. It shown that fish proteases are not absolutely specific to synthetic substrates, which is a result of their less pronounced (than in case of bull trypsin and chymotrypsin) differences in structures of binding centres. The study of the salmon protease interaction with some immobilized ligands has confirmed the higher affinity of enzymes to reagents with two space-separated aromatic rings in their composition. It is supposed that salmon proteases interact with such reagents through two sites: hydrophobic "pockets" and probably additional binding site of the active centre. The salmon protease preparation demonstrates higher resistance to inactivating action of formaldehyde within the range of concentrations 2-16% than bull chymotrypsin does.  相似文献   

6.
A method is described to purify pancreatic carboxypeptidases B (CPB), removing contaminating endoproteinases that interfere with use of CPB for carboxy-terminal analysis or modification of proteins. The separation uses zinc chelate chromatography and is based on the property that CPB has higher affinity for immobilized zinc ions than do serine proteinases such as trypsin and chymotrypsin, which are abundant endoproteolytic activities in pancreas. CPB preparations are loaded onto a column of iminodiacetic acid-Sepharose that has been saturated with ZnCl2. A step gradient with buffers of decreasing pH is used to elute bound proteins. CPB elutes at a lower pH than do the serine proteinases.  相似文献   

7.
Serine proteinases of human polymorphonuclear neutrophils play an important role in neutrophil-mediated proteolytic events; however, the non-oxidative mechanisms by which the cells can degrade extracellular matrix in the presence of proteinase inhibitors have not been elucidated. Herein, we provide the first report that human neutrophils express persistently active cell surface-bound human leukocyte elastase and cathepsin G on their cell surface. Unstimulated neutrophils have minimal cell surface expression of these enzymes; however, phorbol ester induces a 30-fold increase. While exposure of neutrophils to chemoattractants (fMLP and C5a) stimulates modest (two- to threefold) increases in cell surface expression of serine proteinases, priming with concentrations of lipopolysaccharide as low as 100 fg/ml leads to striking (up to 10-fold) increase in chemoattractant-induced cell surface expression, even in the presence of serum proteins. LPS-primed and fMLP-stimulated neutrophils have approximately 100 ng of cell surface human leukocyte elastase activity per 10(6) cells. Cell surface- bound human leukocyte elastase is catalytically active, yet is remarkably resistant to inhibition by naturally occurring proteinase inhibitors. These data indicate that binding of serine proteinases to the cell surface focuses and preserves their catalytic activity, even in the presence of proteinase inhibitors. Upregulated expression of persistently active cell surface-bound serine proteinases on activated neutrophils provides a novel mechanism to facilitate their egress from the vasculature, penetration of tissue barriers, and recruitment into sites of inflammation. Dysregulation of the cell surface expression of these enzymes has the potential to cause tissue destruction during inflammation.  相似文献   

8.
Tissue type plasminogen activator (tPA) is the physiological initiator of fibrinolysis, activating plasminogen via highly specific proteolysis; plasmin then degrades fibrin with relatively broad specificity. Unlike other chymotrypsin family serine proteinases, tPA is proteolytically active in a single-chain form. This form is also preferred for therapeutic administration of tPA in cases of acute myocardial infarction. The proteolytic cleavage which activates most other chymotrypsin family serine proteinases increases the catalytic efficiency of tPA only 5- to 10-fold. The X-ray crystal structure of the catalytic domain of recombinant human single-chain tPA shows that Lys156 forms a salt bridge with Asp194, promoting an active conformation in the single-chain form. Comparisons with the structures of other serine proteinases that also possess Lys156, such as trypsin, factor Xa and human urokinase plasminogen activator (uPA), identify a set of secondary interactions which are required for Lys156 to fulfil this activating role. These findings help explain the anomalous single-chain activity of tPA and may suggest strategies for design of new therapeutic plasminogen activators.  相似文献   

9.
10.
A method of affinity chromatography of the inhibitor of cysteine proteinases from chick egg protein using immobilized ficin has been developed. This method yields a highly active inhibitor in an essentially homogeneous state. The molecular weight of the inhibitor is 14,000. The inhibitor suppresses the activity of ficin and papain but produces no effect on the proteolytic activity of trypsin, chymotrypsin, Asp. oryzae serine proteinase or subtilisine. Isoelectric focusing of the inhibitor has revealed the major band with pI 4.35.  相似文献   

11.
Structural basis of the endoproteinase-protein inhibitor interaction   总被引:9,自引:0,他引:9  
Proteolytic enzymes are potentially hazardous to their protein environment, so that their activity must be carefully controlled. Living organisms use protein inhibitors as a major tool to regulate the proteolytic activity of proteinases. Most of the inhibitors for which 3D structures are available are directed towards serine proteinases, interacting with the active sites in a 'canonical' i.e. substrate-like manner via an exposed reactive site loop of conserved conformation. More recently, some non-canonically binding serine proteinase inhibitors directed against coagulation factors, in particular thrombin, a few cysteine proteinase inhibitors inhibitory towards papain-like proteinases, and three zinc endopeptidase inhibitors directed against metzincins and thermolysin have been characterised in the free and complexed state, displaying novel mechanisms of inhibition with their target proteinases. These different interaction modes are presented and briefly discussed with respect to the different strategies applied by nature.  相似文献   

12.
A double selection method for isolating active enzyme molecules, using substrate analog affinity chromatography and elution with transition state analogs, is described. To demonstrate the principle, a mixture containing native chymotrypsin and [3H]deoxychymotrypsin, in which the active site serine had been converted to [3H]alanine, was applied to a column containing immobilized D-tryptophan methyl ester. Both forms of chymotrypsin were retained. Catalytically active enzyme was selectively desorbed with the peptide aldehyde chymostatin, leaving catalytically inactive deoxychymotrypsin bound to the substrate analog affinity column. This affinity technique may afford a simple and general method for separating enzymes and other catalysts according to their molecular turnover numbers.  相似文献   

13.
A search for alternative sterilants in parasitic fish encouraged us to explore the usefulness of proteinase inhibitors for this purpose. Fertilization in sea lamprey species (Petromyzon marinus L.) was inhibited by chymotrypsin and trypsin inhibitors 4'-acetamidophenyl 4-guanidinobenzoate (AGB), chymostatin, tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) when these substances were added into a fertilization medium at the time of fertilization. Preincubation of eggs before fertilization with 100 microM TPCK, but not TLCK, resulted in inhibition of fertilization. Conversely, preincubation of spermatozoa with TLCK, but not TPCK, produced inhibition of fertilization. These data suggest the involvement of the chymotrypsin-like activity of eggs and trypsin-like activity of spermatozoa in fertilization. However, enzymes present in sperm suspensions were able to hydrolyze a chymotrypsin substrate N-glutaryl-L-phenylalanine-p-nitroanilide (GPNA) but not trypsin substrate N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA). The nature of this activity can be characterized as serine protease and our results indicate the involvement of serine proteinases in the fertilization of sea lamprey.  相似文献   

14.
Crystal structures of P1 Gly, Val, Leu and Phe bovine pancreatic trypsin inhibitor (BPTI) variants in complex with two serine proteinases, bovine trypsin and chymotrypsin, have been determined. The association constants for the four mutants with the two enzymes show that the enlargement of the volume of the P1 residue is accompanied by an increase of the binding energy, which is more pronounced for bovine chymotrypsin. Since the conformation of the P1 side-chains in the two S1 pockets is very similar, we suggest that the difference in DeltaG values between the enzymes must arise from the more polar environment of the S1 site of trypsin. This results mainly from the substitutions of Met192 and Ser189 observed in chymotrypsin with Gln192 and Asp189 present in trypsin. The more polar interior of the S1 site of trypsin is reflected by a much higher order of the solvent network in the empty pocket of the enzyme, as is observed in the complexes of the two enzymes with the P1 Gly BPTI variant. The more optimal binding of the large hydrophobic P1 residues by chymotrypsin is also reflected by shrinkage of the S1 pocket upon the accommodation of the cognate residues of this enzyme. Conversely, the S1 pocket of trypsin expands upon binding of such side-chains, possibly to avoid interaction with the polar residues of the walls. Further differentiation between the two enzymes is achieved by small differences in the shape of the S1 sites, resulting in an unequal steric hindrance of some of the side-chains, as observed for the gamma-branched P1 Leu variant of BPTI, which is much more favored by bovine chymotrypsin than trypsin. Analysis of the discrimination of beta-branched residues by trypsin and chymotrypsin is based on the complexes with the P1 Val BPTI variant. Steric repulsion of the P1 Val residue by the walls of the S1 pocket of both enzymes prevents the P1 Val side-chain from adopting the most optimal chi1 value.  相似文献   

15.
A method--enzymoblotting--was developed for localizing various enzymes after electrophoretic separation, transfer to nitrocellulose, and incubation with specific substrates. As an application, the proteinases porcine trypsin (EC 3.4.21.4), bovine chymotrypsin (EC 3.4.21.1), porcine elastase (EC 3.4.22.11), and their zymogen forms from porcine pancreas homogenate were analyzed utilizing specific p-nitroanilide substrates. After agarose gel electrophoresis, transfer of the separated proteinases to a nitrocellulose membrane was performed by capillary diffusion for 30 min. After air-drying of the nitrocellulose membrane, it was incubated in the appropriate substrate solution for 60 min. N-alpha-Benzoyl-DL-arginine-para-nitroanilide HCl was used as a substrate for trypsin, N-benzoyl-L-tyrosine-para-nitroanilide and succinyl-L-phenylalanine-para-nitroanilide for chymotrypsin, and N-succinyl-L-alanyl-L-alanyl-L-alanine-para-nitroanilide for elastase. p-Nitroaniline, the product thus obtained, was diazotized with N-(1-naphthyl)ethylenediamine to a red azo dye, visible at the site of the proteinases on the nitrocellulose membrane. The results could be preserved at -18 degrees C. Zymogen forms of the pancreas proteinases were detected in a similar manner. They were converted to active proteinases in situ on the nitrocellulose membrane after preincubating the nitrocellulose membrane in the activation enzymes enteropeptidase or trypsin.  相似文献   

16.
Skin penetration by the cercarial stage of the human trematode parasite Schistosoma mansoni is mediated by the secretion of proteolytic enzymes able to digest components of mammalian connective tissues. In the present study the purification of these proteinases from cercarial homogenates is reported. The major proteinase species has a mol. wt. of approx. 25 000 and exists in monomeric form as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This proteinase has an isoelectric point of 6.0. Studies presented here, with a variety of substrates and inhibitors, confirm previous claims that these proteinases belong to the serine class, and, in addition, suggest that they resemble the vertebrate chymotrypsins rather than trypsins or elastases. However, the amino acid composition of the cercarial proteinase differs significantly from bovine chymotrypsin and from the human leucocyte chymotrypsin-like cathepsin G. The amino-acid-composition differences between these proteinases are consistent with their differences in isoelectric point. In order to obtain an insight into the role of the proteinase in skin penetration, its activity on cartilage proteoglycan monomers and on the isolated peptide backbone of proteoglycan was studied. The results of the present study indicate that the cercarial enzyme catalyses a limited specific digestion of the peptide core.  相似文献   

17.
An attempt is made to simulate the P1-P'2 site of the reactive centre of protein inhibitors of serine proteases (serpines). On the basis of data from literature structure requirements are formulated and compound 1,5 bis-dibenzyl-aminopentane is synthesized. It may simultaneously interact with S1- and S'2-sites of chymotrypsin and contains no bonds adequate to the hydrolytic centre of proteinase. The compound is studied for its effect on hydrolysis of low-molecular substrates and proteins by chymotrypsin. Results obtained are discussed as well as the possible role of the S'2-binding site in the substrate activation of serine proteinases and their interaction with serpines.  相似文献   

18.
Three trypsin isoforms (designated as T1, T2, and T3), three chymotrypsin isoforms (Kh1, Kh2, and Kh3), and two elastase isoforms (E1 and E2) were isolated from the pancreas of European catfish Silurus glanis L. by salting out with (NH4)2SO4, gel chromatography on Sephadex G-75, and ion exchange chromatography on DEAE cellulose. Isoelectric points of the enzymes, determined by isoelectric focusing, amounted to 4.42 for T1, 5.64 for T2, 6.90 for T3, 4.93 for Khl, 5.23 for Kh2, 6.18 for Kh3, 6.17 for E1, and 8.48 for E2. Molecular weights of proteinases within each group were close and amounted to 30100 Da for trypsins, 39800 Da for chymotrypsins, and 24000 Da for elastases. The enzymes isolated displayed maximal activities at alkaline pH values. Inhibitor analysis demonstrated that all the proteinases isolated from European catfish pancreas belonged to the serine type.  相似文献   

19.
Human mucus proteinase inhibitor (MPI) consists of 107 amino acids arranged in two domains showing high homology to each other. This protein is an inhibitor of different serine proteinases including trypsin, chymotrypsin, leukocyte elastase and cathepsin G. On the basis of sequence comparisons it has been suggested that the first domain inhibits trypsin, whereas the second one was thought to be active against chymotrypsin and elastase. To prove the location of the different inhibitory activities gene fragments for both domains have been cloned separately and expressed in Escherichia coli. Inhibition assays with the isolated recombinant domains showed that the second domain is active against chymotrypsin, neutrophil elastase and trypsin, whereas for the first domain only a weak activity against trypsin could be detected. These results suggest that the inhibitory activities of the native molecule towards these three proteinases are all located in the second domain.  相似文献   

20.
The serine and cysteine proteinases represent two important classes of enzymes that use a catalytic triad to hydrolyze peptides and esters. The active site of the serine proteinases consists of three key residues, Asp...His...Ser. The hydroxyl group of serine functions as a nucleophile and the imidazole ring of histidine functions as a general acid/general base during catalysis. Similarly, the active site of the cysteine proteinases also involves three key residues: Asn, His, and Cys. The active site of the cysteine proteinases is generally believed to exist as a zwitterion (Asn...His+...Cys-) with the thiolate anion of the cysteine functioning as a nucleophile during the initial stages of catalysis. Curiously, the mutant serine proteinases, thiol subtilisin and thiol trypsin, which have the hybrid Asp...His...Cys triad, are almost catalytically inert. In this study, ab initio Hartree-Fock calculations have been performed on the active sites of papain and the mutant serine proteinase S195C rat trypsin. These calculations predict that the active site of papain exists predominately as a zwitterion (Cys-...His+...Asn). However, similar calculations on S195C rat trypsin demonstrate that the thiol mutant is unable to form a reactive thiolate anion prior to catalysis. Furthermore, structural comparisons between native papain and S195C rat trypsin have demonstrated that the spatial juxtapositions of the triad residues have been inverted in the serine and cysteine proteinases and, on this basis, I argue that it is impossible to convert a serine proteinase to a cysteine proteinase by site-directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号