首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation and initial interrogation of key oxygenase CmmOIV of the biosynthetic pathway of chromomycin A(3) in Streptomyces griseus ssp. griseus revealed that a completely methylated and acetylated prechromomycin is the preferred substrate of this enzyme. This suggests that the three sugar decoration reactions, two O-acetylations and an O-methylation, which were previously believed to occur as the final steps of chromomycin A(3) biosynthesis, indeed take place prior to the CmmOIV reaction. Upon inactivation of CmmOIV, four new compounds accumulated; the fully decorated prechromomycin and its incompletely acetylated precursor along with a diketoprechromomycin-type compound were fully characterized and assayed with CmmOIV.  相似文献   

2.
Chromomycin A3 is an antitumor drug produced by Streptomyces griseus subsp. griseus. It consists of a tricyclic aglycone with two aliphatic side chains and two O-glycosidically linked saccharide chains, a disaccharide of 4-O-acetyl-D-oliose (sugar A) and 4-O-methyl-D-oliose (sugar B), and a trisaccharide of D-olivose (sugar C), D-olivose (sugar D), and 4-O-acetyl-L-chromose B (sugar E). The chromomycin gene cluster contains four glycosyltransferase genes (cmmGI, cmmGII, cmmGIII, and cmmGIV), which were independently inactivated through gene replacement, generating mutants C60GI, C10GII, C10GIII, and C10GIV. Mutants C10GIV and C10GIII produced the known compounds premithramycinone and premithramycin A1, respectively, indicating the involvement of CmmGIV and CmmGIII in the sequential transfer of sugars C and D and possibly also of sugar E of the trisaccharide chain, to the 12a position of the tetracyclic intermediate premithramycinone. Mutant C10GII produced two new tetracyclic compounds lacking the disaccharide chain at the 8 position, named prechromomycin A3 and prechromomycin A2. All three compounds accumulated by mutant C60GI were tricyclic and lacked sugar B of the disaccharide chain, and they were named prechromomycin A4, 4A-O-deacetyl-3A-O-acetyl-prechromomycin A4, and 3A-O-acetyl-prechromomycin A4. CmmGII and CmmGI are therefore responsible for the formation of the disaccharide chain by incorporating, in a sequential manner, two D-oliosyl residues to the 8 position of the biosynthetic intermediate prechromomycin A3. A biosynthetic pathway is proposed for the glycosylation events in chromomycin A3 biosynthesis.  相似文献   

3.
Combinatorial biosynthesis was applied to Streptomyces deoxysugar biosynthesis genes in order to reconstitute "unnatural natural gene clusters" for the biosynthesis of four D-deoxysugars (D-olivose, D-oliose, D-digitoxose, and D-boivinose). Expression of these gene clusters in Streptomyces albus 16F4 was used to prove the functionality of the designed clusters through the generation of glycosylated tetracenomycins. Three glycosylated tetracenomycins were generated and characterized, two of which (D-digitoxosyl-tetracenomycin C and D-boivinosyl-tetracenocmycin C) were novel compounds. The constructed gene clusters may be used to increase the capabilities of microorganisms to synthesize new deoxysugars and therefore to produce new glycosylated bioactive compounds.  相似文献   

4.
5.
Members of the aureolic acid family are tricyclic polyketides with antitumor activity which are produced by different streptomycete species. These members are glycosylated compounds with two oligosaccharide chains of variable sugar length. They interact with the DNA minor groove in high-GC-content regions in a nonintercalative way and with a requirement for magnesium ions. Mithramycin and chromomycins are the most representative members of the family, mithramycin being used as a chemotherapeutic agent for the treatment of several cancer diseases. For chromomycin and durhamycin A, antiviral activity has also been reported. The biosynthesis gene clusters for mithramycin and chromomycin A3 have been studied in detail by gene sequencing, insertional inactivation, and gene expression. Most of the biosynthetic intermediates in these pathways have been isolated and characterized. Some of these compounds showed an increase in antitumor activity in comparison with the parent compounds. A common step in the biosynthesis of all members of the family is the formation of the tetracyclic intermediate premithramycinone. Further biosynthetic steps (glycosylation, methylations, acylations) proceed through tetracyclic intermediates which are finally converted into tricyclic compounds by the action of a monooxygenase, a key event for the biological activity. Heterologous expression of biosynthetic genes from other aromatic polyketide pathways in the mithramycin producer (or some mutants) led to the isolation of novel hybrid compounds.Felipe Lombó and Nuria Menéndez have equally contribute to this work.  相似文献   

6.
D Parke  F Rynne    A Glenn 《Journal of bacteriology》1991,173(17):5546-5550
In members of the family Rhizobiaceae, many phenolic compounds are degraded by the protocatechuate branch of the beta-ketoadipate pathway. In this paper we describe a novel pattern of induction of protocatechuate (pca) genes in Rhizobium leguminosarum biovar trifolii. Isolation of pca mutant strains revealed that 4-hydroxybenzoate, quinate, and 4-coumarate are degraded via the protocatechuate pathway. At least three inducers govern catabolism of 4-hydroxybenzoate to succinyl coenzyme A and acetyl coenzyme A. The enzyme that catalyzes the initial step is induced by its substrate, whereas the catabolite beta-carboxy-cis,cis-muconate induces enzymes for the upper protocatechuate pathway, and beta-ketoadipate elicits expression of the enzyme for a subsequent step, beta-ketoadipate succinyl-coenzyme A transferase. Elucidation of the induction pattern relied in part on complementation of mutant Rhizobium strains by known subclones of Acinetobacter genes expressed off the lac promoter in a broad-host-range vector.  相似文献   

7.
Sinapoylcholine (sinapine) is the most abundant antinutritional phenolic compound in cruciferous seeds. The quaternary ammonium compounds, choline, betaine and N,N-dimethylglycine, reside along a biosynthetic pathway linked to the synthesis of membrane phospholipids and neurotransmitters with various biological functions. In chicken, choline intake is required for optimal egg-laying performance and a choline supplement in diet is positively correlated with weight gains. A key step in sinapine biosynthesis is catalyzed by sinapoylglucose: choline sinapoyltransferase (SCT; EC 2.3.1.91) to form an ester linkage with sinapoylglucose and choline. The objective of this work was to reduce the sinapine content and simultaneously enhance free choline levels in cruciferous seeds. We report here the characterization of an Arabidopsis T-DNA insertion mutant lacking SCT activity in the seed. The sct mutant seeds contain less than 1% of sinapine and a more than 2-fold increase in free choline compared with wild type. We further expressed a choline oxidase (COX; EC 1.1.3.17) gene from Arthrobacter pascens in the Arabidopsis sct mutant and wild-type background using a napin gene promoter to convert free choline into betaine, an effective stress-alleviating compound in plants. Betaine was not detected in WT or sct mutant seeds. The sct+COX seeds contain nearly 2-fold greater levels of betaine relative to WT+COX seeds, demonstrating a positive correlation between endogenous choline and betaine production. In contrast, stable comparable levels of free choline were detected between sct+COX and WT+COX plants suggesting choline homeostasis likely prevent high levels of betaine production in the seed of transgenic COX plants.  相似文献   

8.
In the amino-acid-fermenting anaerobe Eubacterium acidaminophilum, acetyl phosphate is synthesized by protein C of glycine reductase from a selenoprotein A-bound carboxymethyl-selenoether. We investigated specific thiols present in protein C for responsibility for acetyl phosphate liberation. After cloning of the genes encoding the large and the small subunit (grdC1, grdD1), they were expressed separately in Escherichia coli and purified as Strep-tag proteins. GrdD was the only subunit that catalysed arsenate-dependent hydrolysis of acetyl phosphate (up to 274 U.mg-1), whereas GrdC was completely inactive. GrdD contained two cysteine residues that were exchanged by site-directed mutagenesis. The GrdD(C98S) mutant enzyme still catalysed the hydrolysis of acetyl phosphate, but the GrdD(C359A) mutant enzyme was completely inactive. Next, these thiols were analysed further by chemical modification. After iodoacetate treatment of GrdD, the enzyme activity was lost, but in the presence of acetyl phosphate enzyme activity was protected. Subsequently, the inactivated carboxymethylated enzyme and the protected enzyme were both denatured, and the remaining thiols were pyridylethylated. Peptides generated by proteolytic cleavage were separated and subjected to mass spectrometry. Cys98 was not accessible to carboxymethylation by iodoacetate in the native enzyme in the presence or absence of the substrate, but could be alkylated after denaturation. Cys359, in contrast, was protected from carboxymethylation in the presence of acetyl phosphate, but became accessible to pyridylethylation upon prior denaturation of the protein. This clearly confirmed the catalytic role of Cys359 as the active site thiol of GrdD responsible for liberation of acetyl phosphate.  相似文献   

9.
The first step of C-P compound biosynthesis is a C-P bond formation reaction catalyzed by phosphoenolpyruvate phosphomutase, but this reaction favors the cleavage of the C-P bond. This C-P bond forming reaction is driven by the following reaction catalyzed by phosphonopyruvate (PnPy) decarboxylase. We have cloned and sequenced the gene (bcpC) encoding PnPy decarboxylase, a key enzyme of C-P compound biosynthesis, from the bialaphos (BA) producing microorganism Streptomyces hygroscopicus by complementation methods using Streptomyces wedmorensis NP-7, which is a mutant of a fosfomycin producing strain deficient in this step. The location of this gene in the BA biosynthetic gene cluster was determined by using the expression system in Streptomyces lividans. DNA sequencing of this gene revealed a 1203-bp open reading frame encoding a polypeptide of 401 amino acids.  相似文献   

10.
A mutant strain of Escherichia coli unable to carry out the first specific reaction of ubiquinone biosynthesis, that is the conversion of chorismate into 4-hydroxybenzoate, has been isolated. The gene concerned maps at about minute 79 on the E. coli chromosome and has been designated ubiC. This gene is probably the structural gene for chorismate lyase since cell extracts from a transductant strain carrying the ubiC437 mutant allele are unable to convert chorismate into 4-hydroxybenzoate and growing cells of the mutant do not form appreciable quantities of ubiquinone unless 4-hydroxybenzoate is added to the growth medium.  相似文献   

11.
Young leaves from Catharanthus roseus plants contain the enzymes which convert the monoterpenoid indole alkaloid, tabersonine by three hydroxylations, two methylations, and one acetylation step to vindoline. A novel direct enzyme assay has been developed for a hydroxylase involved in vindoline biosynthesis, which catalyzes the C4-hydroxylation of 2,3-dihydro-3-hydroxy-N(1)-methyltabersonine to the 3,4-dihydroxy derivative. The enzyme showed an absolute requirement for 2-oxoglutarate and enzymatic activity was enhanced by ascorbate, establishing it as a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.-). The hydroxylase exhibited specificity for position 4 of various alkaloid substrates. The enzyme exhibited a pH optima between 7 and 8 and an apparent molecular weight of 45,000. The appearance of 4-hydroxylase activity was developmentally regulated and was shown to be inducible by light treatment of seedlings. Substrate specificity studies of this enzyme for indole alkaloid substrate suggested that hydroxylation at position 3 and N-methylation occur prior to hydroxylation at position 4. This is in agreement with previous studies which suggest that C4-hydroxylation is the second to last step in vindoline biosynthesis in Catharanthus roseus.  相似文献   

12.
Recently, six genes of the gibberellin (GA) biosynthesis gene cluster in Gibberella fujikuroi were cloned and the functions of five of these genes were determined. Here we describe the function of the sixth gene, P450-3, and the cloning and functional analysis of a seventh gene, orf3, located at the left border of the gene cluster. We have thereby defined the complete GA biosynthesis gene cluster in this fungus. The predicted amino acid sequence of orf3 revealed no close homology to known proteins. High performance liquid chromatography and gas chromatography-mass spectrometry analyses of the culture fluid of knock-out mutants identified GA1 and GA4, rather than GA3 and GA7, as the major C19-GA products, suggesting that orf3 encodes the GA4 1,2-desaturase. This was confirmed by transformation of the SG139 mutant, which lacks the GA biosynthesis gene cluster, with the desaturase gene renamed des. The transformants converted GA4 to GA7, and also metabolized GA9 (3-deoxyGA4) to GA120 (1,2-didehydroGA9), but the 2alpha-hydroxylated compound GA40 was the major product in this case. We demonstrate also by gene disruption that P450-3, one of the four cytochrome P450 monooxygenase genes in the GA gene cluster, encodes the 13-hydroxylase, which catalyzes the conversion of GA7 to GA3, in the last step of the pathway. This enzyme also catalyzes the 13-hydroxylation of GA4 to GA1. Disruption of the des gene in an UV-induced P450-3 mutant produced a double mutant lacking both desaturase and 13-hydroxylase activities that accumulated high amounts of the commercially important GA4. The des and P450-3 genes differ in their regulation by nitrogen metabolite repression. In common with the other five GA biosynthesis genes, expression of the desaturase gene is repressed by high amounts of nitrogen in the culture medium, whereas P450-3 is the only gene in the cluster not repressed by nitrogen.  相似文献   

13.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.  相似文献   

14.
In Salmonella typhimurium, a single enzyme catalyzes both the acetyl CoA-dependent O-acetylation of hydroxylamines (a key step in the activation of mutagenic nitroaromatic compounds and related aromatic and heterocyclic amines) and the N-acetylation of aromatic amines. S. typhimurium Ames test mutants lacking this activity are highly resistant to the genotoxic effects of nitro compounds. However, such mutants have not yet been obtained in Escherichia coli. We used a PCR-based method to engineer a null mutation (deletion) of the nhoA gene encoding the enzyme in E. coli and we transduced this mutation into a lacZ strain background suitable for use in mutation assays. In E. coli, as in S. typhimurium, nhoA mutants show marked resistance to nitro compound mutagenicity. The new strains provide a clean background for expression of recombinant N-acetyltransferases.  相似文献   

15.
The committed step in the biosynthesis of cysteinyl-leukotrienes is catalyzed by leukotriene C(4) synthase as well as microsomal glutathione S-transferase (MGST) type 2 and type 3, which belong to a family of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG). We cloned and characterized these three enzymes from the rat to allow a side-by-side comparison of structural and catalytic properties. The proteins are 79.6-86.7% identical to the human orthologs. Rat MGST3 fails to convert leukotriene A(4) into leukotriene C(4), which in turn challenges the proposed catalytic role of a conserved Arg and Tyr residue for the leukotriene C(4) synthase reaction. Comparative inhibitor studies of all three enzymes, using MK-886 and cysteinyl-leukotrienes, indicate that their catalytic centers originate from structurally related and overlapping active sites. Hence, it seems feasible to design enzyme inhibitors, which simultaneously target several members of this protein family to yield compounds with increased anti-inflammatory action.  相似文献   

16.
1. The following enzymes of the phosphorylated pathway of serine biosynthesis have been found in methanol- and succinate-grown Pseudomonas AM1: phosphoglycerate dehydrogenase, phosphoserine-alpha-oxoglutarate aminotransferase and phosphoserine phosphohydrolase. Their specific activities were similar in the organism grown on either substrate. 2. A procedure for preparation of auxotrophic mutants of Pseudomonas AM1 is described involving N-methyl-N'-nitro-N-nitrosoguanidine as mutagen and a penicillin enrichment step. 3. A mutant, M-15A, has been isolated that is unable to grow on methanol and that lacks phenazine methosulphate-linked methanol dehydrogenase. The mutant is able to grow on methylamine, showing that the amine is not oxidized by way of methanol. 4. Loss of methanol dehydrogenase activity in mutant M-15A led to loss of phenazine methosulphate-linked formaldehyde dehydrogenase activity showing that the same enzyme is probably responsible for both activities. 5. A mutant, 20B-L, has been isolated that cannot grow on any C(1) compound tested but can grow on succinate. 6. Mutant 20B-L lacks hydroxypyruvate reductase, and revertants that regained the ability to grow on methanol, methylamine and formate contained hydroxypyruvate reductase activity at specific activities similar to that of the wild-type organism. This shows that hydroxypyruvate reductase is necessary for growth on methanol, methylamine and formate but not for growth on succinate. 7. The results suggest that during growth of Pseudomonas AM1 on C(1) compounds, serine is converted into 3-phosphoglycerate by a non-phosphorylated pathway, whereas during growth on succinate, phosphoglycerate is converted into serine by a phosphorylated pathway.  相似文献   

17.
The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.  相似文献   

18.
The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences.  相似文献   

19.
目的:从酮古龙酸菌SCB329株中分离山梨糖生物氧化相关酶的基因并进行表达验证。方法:根据酮古龙酸菌SCB329株基因组序列设计引物,通过PCR从SCB329株基因组中扩增醇醛脱氢酶基因aadh;构建载体pBMP3-aadh并在大肠杆菌中表达,经活性染色、体外转化反应等方法考察表达产物的活性。结果:目的产物能够催化山梨糖、葡萄糖、果糖、木糖等多种含羟基及羰基化合物脱氢,并能将L-山梨糖直接转化为2-酮基-L-古龙酸。结论:从酮古龙酸菌SCB329株中分离到一种醇醛脱氢酶基因,可为该菌株糖酸转化机制的研究提供帮助。  相似文献   

20.
Salmonella typhimurium can normally use glycine as a serine source to support the growth of serine auxotrophs. This reaction was presumed to occur by the reversible activity of the enzyme, serine transhydroxymethylase (E. C. 2. 1. 2. 1; L-serine: tetrahydrofolic-5, 10 transhydroxymethylase), which is responsible for glycine biosynthesis. However, this enzyme had not been demonstrated to be solely capable of synthesizing serine from glycine in vivo. The isolation and characterization of a mutant able to convert serine to glycine but unable to convert glycine to serine supports the conclusion that a single enzyme is involved in this reversible interconversion of serine and glycine. The mutation conferring this phenotype was mapped with other mutations affecting serine transhydroxymethylase (glyA) and assays demonstrated reduced activities of this enzyme in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号