首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficiency of plants' transformation depends on many factors. The genotype, applied techniques and conditions of plant's modification and modified plant regeneration are the most important among them. In our studies regeneration and transformation conditions for two strawberry cultivars were determined and compared. Plants were transformed by Agrobacterium tumefaciens LBA4404 strain containing plasmid pBIN19 with nptII and gus-reporter genes. Experiment was carried out on more than 1300 leaf explants from each cultivar. Generally, `Induka' plants characterized with higher regeneration potential than `Elista'. The highest number of regenerated shoots was obtained on MS medium with 0.4 mg l –1 IBA and 1.8 mg l–1 BA (3.5 and 1.8 shoots/explant for `Induka' and `Elista', respectively). After plant transformation number of regenerated, transgenic shoots was higher for `Elista' (on the average: 8.3 shoots/100 explants). The number of transgenic `Induka' shoots, obtained at the same conditions, was twice lower (4.2). Simultaneously `Induka' plants needed higher kanamycin concentration for transgenic explants selection than `Elista' (25 mg l–1). Preliminary incubation of A. tumefaciens in LB or MS medium with acetosyringone and IAA resulted in increasing transgenic shoots number (per 100 explants: `Induka' 4.5, `Elista' 8.0–9.5 shoots). After using untreated bacteria for plants' transformation, number of transgenic plants varied (dependently on cultivar) from 3.8 to 7.0/100 explants. Applying LB or MS as basic medium as well as adding tobacco plant extract to these media did not significantly influence transformation efficiency.  相似文献   

2.
In vitro anther-derived monoploids (2n=x=12) of Solanum phureja were compared for shoot regeneration from leaf and stem explants under various environmental conditions. Monoploids from the same or different diploid clones varied for frequency and earliness of shoot regeneration and number of shoots formed per explant. Leaf explants regenerated at higher frequencies than stem explants. Explants from stock plantlets subcultured at a 2- or 4-week interval regenerated earlier and at a higher frequency than those from plantlets subcultured at longer intervals. Regeneration frequency and number of shoots per explant were greater when explants were incubated at 20°C compared to 25°C. Explants from stock plantlets maintained under a 16 h as opposed to an 11 h photoperiod exhibited increased shoot regeneration; however, neither photoperiod nor the maintenance temperature of the stock plantlets influenced regeneration frequency. Genotypic differences were observed for the frequency of chromosome doubling among regenerated shoots whereas temperature treatments had no influence on chromosome doubling.Abbreviations BA benzyladenine - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA -naphthale-neacetic acid  相似文献   

3.
Doubled haploid (DH) genotypes from a genetic mapping population of Brassica oleracea were screened for ease of transformation. Candidate genotypes were selected based on prior knowledge of three phenotypic markers: susceptibility to Agrobacterium tumefaciens, shoot regeneration potential and mode of shoot regeneration. Mode of regeneration was found to be the most significant of the three factors. Transgenic plants were successfully obtained from genotypes that regenerated multiple shoots via a distinct swelling or callus phase. The absence of tissue culture blackening (associated with genotypes that formed callus) was found to be critical for transformation success. Transgenic shoots were obtained from genotypes that regenerated via an indirect callus mode, even when susceptibility to Agrobacterium was low. The most efficient genotype (DH AG1012) produced transgenic shoots at an average rate of 15% (percentage of inoculated explants giving rise to transgenic plants). The speed and efficiency of regeneration enabled the isolation of transgenic shoots 5–6 weeks after inoculation with A. tumefaciens. This line was also self-compatible, enabling the production of seed without the need for hand-pollination. A genetically uniform DH genotype, with an associated genetic map, make DH AG1012 highly desirable as a potential model B. oleracea genotype for studying gene function. The possibility of applying the same phenotypic tissue culture markers to other Brassica species is discussed.  相似文献   

4.
Summary To achieve reliable stable transformation of sweet potato, we first developed efficient shoot regeneration for stem explants, leaf disks, and petioles of sweet potato (Ipomoea batatas (L.) Lam.) cultivar Beniazuma. The shoot regeneration protocol enabled reproducible stable transformation mediated by Agrobacterium tumefaciens strain EHA105. The binary vector pIG121Hm contains the npt II (pnos) gene for kanamycin (Km) resistance, the hpt (p35S) gene for hygromycin (Hyg) resistance, and the gusA (p35S) reporter gene for β-glucuronidase (GUS). After 3 d co-cultivation, selection of calluses from the three explant types began first with culture on 50 mg l−1 of Km for 6 wk and then transfer to 30 mg l−1 of Hyg for 6–16 wk in Linsmaier and Skoog (1965) medium (LS) also containing 6.49 μM 4-fluorophenoxyacetic acid and 250 mgl−1 cefotaxime in the dark. The selected friable calluses regenerated shoots in 4 wk on LS containing 15.13 μM abscisic acid and 2.89 μM gibberellic acid under a 16h photoperiod of 30 μmol m−2s−1. The two-step selection method led to successful recovery of transgenic shoots from stem explants at 30.8%, leaf dises 11.2%, and petioles 10.7% stable transformation efficiencies. PCR analyses of 122 GUS-positive lines revealed the expected fragment for hpt. Southern hybridization of genomic DNA from 18 independent transgenic lines detected the presence of the gusA gene. The number of integrated T-DNA copies varied from one to four.  相似文献   

5.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

6.
Somatic embryogenesis in Canary Island date palm   总被引:14,自引:0,他引:14  
Shoot regeneration was obtained from leaves of in vitro cultures of wild pear genotypes. The highest regeneration rates, ranging from 40% to 64%, depending on the genotype, were obtained using leaves wounded by three cuts transversely to the mid-rib, a Quoirin and Lepoivre macro-salt composition, 250 mg l-1 cefotaxime and maintaining the explants in darkness for the first 30 days (induction phase), then transferring them to an auxin-free medium in light (expression phase). A concentration of 8.8 μM BA induced the highest number of explants to produce adventitious shoots. TDZ was less effective than BA and induced hyperhydricity in regenerated shoots. The histological studies revealed that the regenerated shoots originated mainly from callus formed by epidermal and sub-epidermal cells and by cells of the vascular tissue. The regenerated shoots were micropropagated, rooted and transplanted to the soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Development of an efficient transformation method for recalcitrant crops such as sugar beet (Beta vulgaris L.) depends on identification of germplasm with relatively high regeneration potential. Individual plants of seven sugar beet breeding lines were screened for their ability to form adventitious shoots on leaf disk callus. Disks were excised from the first pair of true leaves of 3-wk-old seedlings or from partially expanded leaves of 8-mo.-old plants and cultured on medium with 4.4 μM 6-benzylaminopurine for 10 wk. At 5 wk of culture, friable calluses and adventitious shoots began to develop. Rates of callus and shoot formation varied between breeding lines and between individual plants of the same line. Line FC607 exhibited the highest percentage (61%) of plants that regenerated shoots on explants. Among the plants with a positive shoot regeneration response, line FC607 also had the highest mean number (8.3±1.1) of shoots per explant. Individual plants within each line exhibited a wide range of percentages of explants that regenerated shoots. A similar variation was observed in the number of shoots that regenerated per explant of an individual plant. No loss of regeneration potential was observed on selected plants maintained in the greenhouse for 3 yr. Regenerated plants exhibited normal phenotypes and regeneration abilities comparable to the respective source plants. Based on our results, it is imperative to screen a large number of individual plants within sugar beet breeding lines in order to identify the high regenerators for use in molecular breeding and improvement programs.  相似文献   

8.
Several culture conditions were examined for promoting efficient plant regeneration from explants of Gentiana. Adventitious shoot regeneration from leaf explants of cv. WSP-3 was very superior on MS medium, compared to B5 medium, supplemented with four cytokinins (TDZ, 4PU-30, BA and zeatin). An auxin / cytokinin combination was required for regeneration. TDZ was the most effective cytokinin, while NAA was more effective than IAA or 2,4-D. Optimum conditions for regeneration from explants (leaf, stem and root) of cv. WSP-3, evaluated in terms of regeneration frequency and number of regenerated shoots per explant, were TDZ and NAA in combination, 5–10 mg/l and 0.1 mg/l for leaf and stem explants, and 10 mg/l and 1 mg/l for root explants, respectively. Application of these conditions to eight other commercial cultivars resulted in 30–100% regeneration from leaf explants. The number of chromosomes in each of ten regenerated plants of each cultivar was diploid, 2n=26. Shoots regenerated in vitro were rooted in phytohormone-free medium and transferred to soil.Abbreviations MS medium Murashige and Skoog's medium (Murashige and Skoog 1962) - B5 medium Gamborg B5 medium (Gamborg et al. 1968) - BA 6-benzylaminopurine - TDZ N-phenyl-N'-1,2,3-thiadiazol-5-yl urea - 4PU-30 N-(2-chloro-4-pyridyl)-N'-phenylurea - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid  相似文献   

9.
This report deals with micropropagation of the critically endangered and endemic Turkish shrub, Thermopsis turcica using callus, root and cotyledonary explants. Callus cultures were initiated from root and cotyledon explants on MS medium supplemented with 0.5–20 μM NAA or 2,4-D. The root explants were found to be better in terms of quick responding and callusing percentages as compared to the cotyledons. Organogenic callus production with adventitious roots and shoots were obtained on MS medium with only NAA. The calli obtained with NAA, root and cotyledonary explants were cultured with BA and kinetin (2–8 μM) alone or in combination with a low level (0.5 μM) of 2,4-D or NAA. The best regeneration of shoots from root explants was observed on hormone-free MS medium. NAA with BA or kinetin in the medium improved shoot induction from the calli obtained with NAA. Maximum percentage of shoots (93.3%), maximum number of shoots (6.2) and maximun length of shoots (8.22 cm) were achieved from cotyledonary explants at 4 μM BA and 0.5 μM NAA. The presence of 0.5 μM or higher levels of 2,4-D in shoot induction medium inhibited the regeneration in T. turcica explants. 83% of in vitro rooting was attained on pulsed-IBA treated shoots. The regenerated plants with well developed shoots and roots were successfully acclimatized. Application of this study’s results has the potential to conserve T. turcica from extinction.  相似文献   

10.
A regeneration and transformation system has been developed using organogenic calluses derived from soybean axillary nodes as the starting explants. Leaf-node or cotyledonary-node explants were prepared from 7 to 8-d-old seedlings. Callus was induced on medium containing either Murashige and Skoog (MS) salts or modified Finer and Nagasawa (FNL) salts and B5 vitamins with various concentrations of benzylamino purine (BA) and thidiazuron (TDZ). The combination of BA and TDZ had a synergistic effect on callus induction. Shoot differentiation from the callus occurred once the callus was transferred to medium containing a low concentration of BA. Subsequently, shoots were elongated on medium containing indole-3-acetic acid (IAA), zeatin riboside, and gibberellic acid (GA). Plant regeneration from callus occurred 90 ∼ 120 d after the callus was cultured on shoot induction medium. Both the primary callus and the proliferated callus were used as explants for Agrobacterium-mediated transformation. The calluses were inoculated with A. tumefaciens harboring a binary vector with the bar gene as the selectable marker gene and the gusINT gene for GUS expression. Usually 60–100% of the callus showed transient GUS expression 5 d after inoculation. Infected calluses were then selected on media amended with various concentrations of glufosinate. Transgenic soybean plants have been regenerated and established in the greenhouse. GUS expression was exhibited in various tissues and plant organs, including leaf, stem, and roots. Southern and T1 plant segregation analysis of transgenic events showed that transgenes were integrated into the soybean genome with a copy number ranging from 1–5 copies.  相似文献   

11.
We have achieved high-frequency shoot regeneration in radish(Raphanus sativus). Cotyledon explants from four-day-old seedlings were suitable for the effective induction of shoots on Murashige and Skoog’s (MS) medium containing 3.0 mg/L kinetin. We also determined that it was essential to include 1- to 2-ram petiole segments with the cotyledons for efficient induction. When the regenerated shoots were transferred to an MS liquid medium containing 0.1 mg/L NAA, roots formed within four weeks, and normal plant development ensued. We established a transformation protocol using anAgrobacterium binary vector that carries the GUS reporter gene. Preculturing the explants for I d in an MS medium containing 3.0 mg/L kinetin also increased efficiency. Five days of cocultivation proved best for delivering T-DNA into radish. Transformation frequencies of up to 52% were obtained in shoot induction media that contained 3.0 mg/L kinetin.  相似文献   

12.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   

13.
We intended to examine the expression of the T-cell growth factor (human interleukin-2) so that a binary vector, pSSK-1, carrying the IL-2 gene was constructed and transferred intoA. tumefaciens for the purpose of the transformation of the potato (Solanum tuberosum cv. Superior). All of theAgrobacterium-infected potato explants were regenerated to shoots in modified MS medium and 81% of them rooted on the medium containing kanamycin (200 mg/L). Southern and Northern analysis were performed to verify the transformation events. EL-ISA test indicated that IL-2 protein was produced from IL-2-transformed potatoes. These results suggested expression and production of the IL-2 protein from the transgenic potato.  相似文献   

14.
Han JS  Oh DG  Mok IG  Park HG  Kim CK 《Plant cell reports》2004,23(5):291-296
Using cotyledon explants excised from seedlings germinated in vitro, an efficient plant regeneration system via organogenesis was established for bottle gourd (Lagenaria siceraria Standl.). Maximum shoot regeneration was obtained when the proximal parts of cotyledons from 4-day-old seedlings were cultured on MS medium with 3 mg/l BA and 0.5 mg/l AgNO3 under a 16-h photoperiod. After 3–4 weeks of culture, 21.9–80.7% of explants from the five cultivars regenerated shoots. Adventitious shoots were successfully rooted on a half-strength MS medium with 0.1 mg/l IAA for 2–3 weeks. Flow cytometric analysis revealed that most of the regenerated plants derived from culture on medium with AgNO3 were diploid.  相似文献   

15.
The effect of several β-lactam antibiotics on shoot regeneration, growth and rooting of carnation (Dianthus caryophyllus L.), and their use in combination with kanamycin in Agrobacterium-mediated genetic transformation studies, was determined. Carbenicillin, cefotaxime and ticarcillin increased the regeneration rate when added alone in non-inoculated explants; whereas, with inoculated explants, this effect was only observed in ticarcillin-containing medium. Cefotaxime inhibited root growth in both transgenic and non-transgenic shoots. Rooting of non-transgenic shoots was completely inhibited in all culture media containing kanamycin. The different antibiotics used, alone or in combination, did not prevent the occurrence of false positive shoots, but it was possible to select transgenic shoots when rooting was induced in a kanamycin + ticarcillin-containing medium. Regenerated transformed shoots were free of Agrobacterium after culturing in rooting medium, as was proven by the PCR analysis for the nptI gene, the antibiogram and the culture of tissue pieces of transgenic shoots on LB broth. The use of kanamycin and timentin with or without carbenicillin, was very useful in the transformation procedure, for the elimination of Agrobacterium in regenerated shoots before their transfer to greenhouse conditions and also in the selection of transgenic versus false-positive shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
In an attempt to develop a system for producing transformed plants from explants ofDendranthema grandiflora, the susceptibility of the cultivar Super White to various wild-type strains ofAgrobacterium tumefaciens andA. rhizogenes was investigated. Tumour formation was not a reliable indicator of the ability of a related disarmed strain to mediate transformation. Following inoculation of explants with disarmedAgrobacterium strains, a number of shoots developed on selective media. However, none of these shoots were transformed. By co-cultivating stem internode explants with a mixed inoculum of wild-type and disarmed strains, it was possible to obtain a callus stably transformed withAgrobacterium carrying a disarmed T-DNA. Histological analysis of explants revealed that shoot regeneration initially occurred from the cells of the epidermis and subsequently from the cortex. However, the cells which were susceptible to T-DNA transfer were confined to the vascular tissue.  相似文献   

17.
Seedling explants of three tomato (Lycopersicon esculentum) and four bell pepper (Capsicum annuum) cultivars consisting of the radicle, the hypocotyl and one cotyledon were obtained after removing the primary and axillary meristems. After 14 days of incubation on solid Murashige and Skoog (MS) medium without growth regulators, explants of both species regenerated multiple shoots on the cut surface (2.9–5.3 shoots per explant for tomato and 1.2–2.2 for bell pepper cultivars). After excision, the shoots were rooted on solid MS medium and acclimated to the greenhouse. This method was highly efficient in tomato and, particularly, in bell pepper, where plant regeneration is especially difficult. We used these explants to transform tomato with Agrobacterium tumefaciens containing a 35S-GUS-intron binary vector. As shown by GUS expression, 47% of the tomato explants produced transformed meristems, which differentiated into plants that exhibited a low (3%) tetraploidy ratio. Southern blots and analysis of inheritance of the foreign genes indicated that T-DNA was stably integrated into the plant genome. The use of this technique opens new prospects for plant transformation in other dicotyledoneous plants in which genetic engineering has been limited, to date, due to the difficulties in developing an efficient in vitro regeneration system.  相似文献   

18.
Summary Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, -glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.  相似文献   

19.
As part of a large-scale genomics project focused on understanding and improving the Shepody potato, we have increased the regeneration and transformation rates for this cultivar. Using combinations of auxins and trans-zeatin, leaf and stem explants were evaluated for callus induction and shoot formation. Several plant growth regulator combinations resulted in higher plant regeneration rates over a previous method. Using the best combination of auxin and cytokinin in combination with Agrobacterium-mediated transformation, we regenerated independent putative transformants from 59.5% of the total explants plated. We ran PCR on a sample of the plants to confirm transformation and 47.1% were nptII positive; giving a confirmed transformation rate of 28.0%.  相似文献   

20.
An Agrobacterium tumefaciens-mediated transformation protocol was developed for detached cotyledons of Pinus radiata zygotic embryos resulting in up to 55% of cotyledons transiently expressing the reporter gene uidA. Transient expression of uidA was improved when detached cotyledons were pre-cultured on half strength medium containing cytokinin for 7 days, wounded by vortexing and then vacuum-infiltrated in a solution of A. tumefaciens. The transformation protocol was applied both to cotyledons and also to the apical meristematic dome which was the portion of the embryo remaining after cotyledons were detached, and from which the apical shoot and axillary shoots regenerate. Molecular analysis of putatively transformed shoots regenerated either adventitiously from cotyledons or via axillary shoots from apical domes, indicated the presence of uidA and nptII genes by PCR in some of these shoots. Biochemical analysis of putatively transformed shoots using nptII ELISA indicated that they contained the nptII enzyme. However, Southern hybridisation indicated stable integration of nptII only in one shoot which was regenerated from an apical dome. Shoots regenerated from cotyledons appeared to exhibit chimeric expression and were not stably transformed. Based on a comparison of time for regeneration, technical difficulty, molecular and biochemical analysis, apical domes may be more suitable as explants for transformation and subsequent regeneration of transclones than detached cotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号