首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8+ T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8+ T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4+ T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism.  相似文献   

2.
Sublethal hyperoxia impairs pulmonary innate immunity   总被引:2,自引:0,他引:2  
Supplemental oxygen is often required in the treatment of critically ill patients. The impact of hyperoxia on pulmonary host defense is not well-established. We hypothesized that hyperoxia directly impairs pulmonary host defense, beyond effects on alveolar wall barrier function. C57BL/6 mice were kept in an atmosphere of >95% O(2) for 4 days followed by return to room air. This exposure does not lead to mortality in mice subsequently returned to room air. Mice kept in room air served as controls. Mice were intratracheally inoculated with Klebsiella pneumoniae and followed for survival. Alveolar macrophages (AM) were harvested by bronchoalveolar lavage after 4 days of in vivo hyperoxia for ex vivo experiments. Mortality from pneumonia increased significantly in mice exposed to hyperoxia compared with infected mice in room air. Burden of organisms in the lung and dissemination of infection were increased in the hyperoxia group whereas accumulation of inflammatory cells in the lung was impaired. Hyperoxia alone had no impact on AM numbers, viability, or ability to phagocytize latex microbeads. However, following in vivo hyperoxia, AM phagocytosis and killing of Gram-negative bacteria and production of TNF-alpha and IL-6 in response to LPS were significantly reduced. AM surface expression of Toll-like receptor-4 was significantly decreased following in vivo hyperoxia. Thus sublethal hyperoxia increases Gram-negative bacterial pneumonia mortality and has a significant adverse effect on AM host defense function. Impaired AM function due to high concentrations of supplemental oxygen may contribute to the high rate of ventilator-associated pneumonia seen in critically ill patients.  相似文献   

3.
The effects of continuous exposure to nitrogen dioxide (NO2) on the pathologic and immunologic responses of ddY mice to the infection with Mycoplasma pulmonis were investigated. The organisms grew well in the trachea as early as 7 days after infection but barely grew in the lung even after 28 days, causing slight pneumonic lesions in only a few of the infected mice exposed to 1 and 5 ppm NO2. When mice were exposed to 10 ppm NO2 at or after the infection, however, mycoplasmal growth in the lung, but not in the trachea, was greatly enhanced, and pneumonic lesions were evident in the lung of almost all the mice examined. The serum antibody titers to M. pulmonis increased with time after infection regardless of the concentration of NO2 exposed or the mycoplasmal number in the respiratory tract in the infected mice. The in vitro immune responses of the spleen cells of the infected mice were significantly depressed by exposure to 10 ppm NO2 in not only mitogenic response to LPS and ConA but also antibody production to SRBC, whereas uninfected healthy mice were apparently not modulated except for a slight decrease in Con A response.  相似文献   

4.
Hypersensitivity pneumonitis (HP) is a granulomatous, inflammatory lung disease caused by inhalation of organic Ags, most commonly thermophilic actinomycetes that cause farmer's lung disease. The early response to Ag is an increase in neutrophils in the lung, whereas the late response is a typical Th1-type granulomatous disease. Many patients who develop disease report a recent viral respiratory infection. These studies were undertaken to determine whether viruses can augment the inflammatory responses in HP. C57BL/6 mice were exposed to the thermophilic bacteria Saccharopolyspora rectivirgula (SR) for 3 consecutive days per wk for 3 wk. Some mice were exposed to SR at 2 wk after infection with respiratory syncytial virus (RSV), whereas others were exposed to SR after exposure to saline alone or to heat-inactivated RSV. SR-treated mice developed a typical, early neutrophil response and a late granulomatous inflammatory response. Up-regulation of IFN-gamma and IL-2 gene expression was also found during the late response. These responses were augmented by recent RSV infection but not by heat-inactivated RSV. Mice with a previous RSV infection also had a greater early neutrophil response to SR, with increased macrophage inflammatory protein-2 (MIP-2, murine equivalent of IL-8) release in bronchoalveolar lavage fluid. These studies suggest that viral infection can augment both the early and late inflammatory responses in HP.  相似文献   

5.
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.  相似文献   

6.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

7.

Background

Cigarette smoke (CS) is the major etiologic factor of chronic obstructive pulmonary disease (COPD). CS-exposed mice develop emphysema and mild pulmonary inflammation but no airway obstruction, which is also a prominent feature of COPD. Therefore, CS may interact with other factors, particularly respiratory infections, in the pathogenesis of airway remodeling in COPD.

Methods

C57BL/6 mice were exposed to CS for 2 h a day, 5 days a week for 8 weeks. Mice were also exposed to heat-killed non-typeable H. influenzae (HK-NTHi) on days 7 and 21. One day after the last exposure to CS, mice were sacrificed and lung inflammation and mechanics, emphysematous changes, and goblet cell metaplasia were assessed. Mice exposed to CS or HK-NTHi alone or room air served as controls. To determine the susceptibility to viral infections, we also challenged these mice with rhinovirus (RV).

Results

Unlike mice exposed to CS or HK-NTHi alone, animals exposed to CS/HK-NTHi developed emphysema, lung inflammation and goblet cell metaplasia in both large and small airways. CS/HK-NTHi-exposed mice also expressed increased levels of mucin genes and cytokines compared to mice in other groups. CS/HK-NTHi-exposed mice infected with RV demonstrated increased viral persistence, sustained neutrophilia, and further increments in mucin gene and chemokine expression compared to other groups.

Conclusions

These findings indicate that in addition to CS, bacteria may also contribute to development of COPD, particularly changes in airways. Mice exposed to CS/HK-NTHi are also more susceptible to subsequent viral infection than mice exposed to either CS or HK-NTHi alone.  相似文献   

8.
Severe infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury (ALI). Accumulating evidence suggests that mechanical ventilation (MV) is an important cofactor in the development of ALI by modulating the host immune responses to bacteria. This study investigates whether MV enhances the host response to pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for RSV infection in humans. BALB/c mice were inoculated intranasally with diluted clarified lung homogenates from mice infected with PVM strain J3666 or uninfected controls. Four days after inoculation, the mice were subjected to 4 h of MV (tidal volume, 10 ml/kg) or allowed to breathe spontaneously. When compared with that of mice inoculated with PVM only, the administration of MV to PVM-infected mice resulted in increased bronchoalveolar lavage fluid concentrations of the cytokines macrophage inflammatory protein (MIP)-2, MIP-1alpha (CCL3), and IL-6; increased alveolar-capillary permeability to high molecular weight proteins; and increased caspase-3 activity in lung homogenates. We conclude that MV enhances the activation of inflammatory and caspase cell death pathways in response to pneumovirus infection. We speculate that MV potentially contributes to the development of lung injury in patients with RSV infection.  相似文献   

9.

Background

Cigarette smoke has both pro-inflammatory and immunosuppressive effects. Both active and passive cigarette smoke exposure are linked to an increased incidence and severity of respiratory virus infections, but underlying mechanisms are not well defined. We hypothesized, based on prior gene expression profiling studies, that upregulation of pro-inflammatory mediators by short term smoke exposure would be protective against a subsequent influenza infection.

Methods

BALB/c mice were subjected to whole body smoke exposure with 9 cigarettes/day for 4 days. Mice were then infected with influenza A (H3N1, Mem71 strain), and analyzed 3 and 10 days later (d3, d10). These time points are the peak and resolution (respectively) of influenza infection.

Results

Inflammatory cell influx into the bronchoalveolar lavage (BALF), inflammatory mediators, proteases, histopathology, viral titres and T lymphocyte profiles were analyzed. Compared to smoke or influenza alone, mice exposed to smoke and then influenza had more macrophages, neutrophils and total lymphocytes in BALF at d3, more macrophages in BALF at d10, lower net gelatinase activity and increased activity of tissue inhibitor of metalloprotease-1 in BALF at d3, altered profiles of key cytokines and CD4+ and CD8+ T lymphocytes, worse lung pathology and more virus-specific, activated CD8+ T lymphocytes in BALF. Mice smoke exposed before influenza infection had close to 10-fold higher lung virus titres at d3 than influenza alone mice, although all mice had cleared virus by d10, regardless of smoke exposure. Smoke exposure caused temporary weight loss and when smoking ceased after viral infection, smoke and influenza mice regained significantly less weight than smoke alone mice.

Conclusion

Smoke induced inflammation does not protect against influenza infection.In most respects, smoke exposure worsened the host response to influenza. This animal model may be useful in studying how smoke worsens respiratory viral infections.  相似文献   

10.

Background

Cigarette smoke has both pro-inflammatory and immunosuppressive effects. Both active and passive cigarette smoke exposure are linked to an increased incidence and severity of respiratory virus infections, but underlying mechanisms are not well defined. We hypothesized, based on prior gene expression profiling studies, that upregulation of pro-inflammatory mediators by short term smoke exposure would be protective against a subsequent influenza infection.

Methods

BALB/c mice were subjected to whole body smoke exposure with 9 cigarettes/day for 4 days. Mice were then infected with influenza A (H3N1, Mem71 strain), and analyzed 3 and 10 days later (d3, d10). These time points are the peak and resolution (respectively) of influenza infection.

Results

Inflammatory cell influx into the bronchoalveolar lavage (BALF), inflammatory mediators, proteases, histopathology, viral titres and T lymphocyte profiles were analyzed. Compared to smoke or influenza alone, mice exposed to smoke and then influenza had more macrophages, neutrophils and total lymphocytes in BALF at d3, more macrophages in BALF at d10, lower net gelatinase activity and increased activity of tissue inhibitor of metalloprotease-1 in BALF at d3, altered profiles of key cytokines and CD4+ and CD8+ T lymphocytes, worse lung pathology and more virus-specific, activated CD8+ T lymphocytes in BALF. Mice smoke exposed before influenza infection had close to 10-fold higher lung virus titres at d3 than influenza alone mice, although all mice had cleared virus by d10, regardless of smoke exposure. Smoke exposure caused temporary weight loss and when smoking ceased after viral infection, smoke and influenza mice regained significantly less weight than smoke alone mice.

Conclusion

Smoke induced inflammation does not protect against influenza infection. In most respects, smoke exposure worsened the host response to influenza. This animal model may be useful in studying how smoke worsens respiratory viral infections.  相似文献   

11.
Respiratory syncytial virus-induced bronchiolitis has been linked to the development of allergy and atopic asthma. IL-12 and possibly IL-18 are central mediators orchestrating Th1 and/or Th2 immune responses to infection. To determine a possible role for IL-12 in regulating the immune response to acute respiratory syncytial virus infection, IL-12p40 gene-targeted (IL-12p40-/-) and wild-type mice were intratracheally infected with respiratory syncytial virus, and lung inflammatory and immune responses were assessed. Lung inflammation and mucus production were increased in the airways of IL-12p40-/- mice as compared with those of wild-type mice, concurrent with increased levels of the Th2 effector cytokines IL-5 and IL-13. Respiratory syncytial virus clearance and levels of Th1 effector cytokine IFN-gamma were not altered. Interestingly, IL-18, another mediator of IFN-gamma production, was significantly increased in the lungs of IL-12p40-/- mice early during the course of infection. Abrogation of IL-18-mediated signaling in IL-12p40-/- mice further enhanced Th2 immune response and mucus production in the airways during respiratory syncytial virus infection but failed to modulate IFN-gamma production or viral clearance. These findings implicate a role for IL-12 and IL-18 in modulating respiratory syncytial virus-induced airway inflammation distinct from that of viral clearance.  相似文献   

12.
The precise immune components required for protection against a respiratory Orthopoxvirus infection, such as human smallpox or monkeypox, remain to be fully identified. In this study, we used the virulent Western Reserve strain of vaccinia virus (VACV-WR) to model a primary respiratory Orthopoxvirus infection. Naive mice infected with VACV-WR mounted an early CD8 T cell response directed against dominant and subdominant VACV-WR Ags, followed by a CD4 T cell and Ig response. In contrast to other VACV-WR infection models that highlight the critical requirement for CD4 T cells and Ig, we found that only mice deficient in CD8 T cells presented with severe cachexia, pulmonary inflammation, viral dissemination, and 100% mortality. Depletion of CD8 T cells at specified times throughout infection highlighted that they perform their critical function between days 4 and 6 postinfection and that their protective requirement is critically dictated by initial viral load and virulence. Finally, the ability of adoptively transferred naive CD8 T cells to protect RAG(-/-) mice against a lethal VACV-WR infection demonstrated that they are both necessary and sufficient in protecting against a primary VACV-WR infection of the respiratory tract.  相似文献   

13.
Several different mammalian neurotropic viruses produce an age-dependent encephalitis characterized by more severe disease in younger hosts. To elucidate potential factors that contribute to age-dependent resistance to lethal viral encephalitis, we compared central nervous system (CNS) gene expression in neonatal and weanling mice that were either mock infected or infected intracerebrally with a recombinant strain, dsTE12Q, of the prototype alphavirus Sindbis virus. In 1-day-old mice, infection with dsTE12Q resulted in rapidly fatal disease associated with high CNS viral titers and extensive CNS apoptosis, whereas in 4-week-old mice, dsTE12Q infection resulted in asymptomatic infection with lower CNS virus titers and undetectable CNS apoptosis. GeneChip expression comparisons of mock-infected neonatal and weanling mouse brains revealed developmental regulation of the mRNA expression of numerous genes, including some apoptosis regulatory genes, such as the proapoptotic molecules caspase-3 and TRAF4, which are downregulated during development, and the neuroprotective chemokine, fractalkine, which is upregulated during postnatal development. In parallel with increased neurovirulence and increased viral replication, Sindbis virus infection in 1-day-old mice resulted in both a greater number of host inflammatory genes with altered expression and greater changes in levels of host inflammatory gene expression than infection in 4-week-old mice. Only one inflammatory response gene, an expressed sequence tag similar to human ISG12, increased by a greater magnitude in infected 4-week-old mouse brains than in infected 1-day-old mouse brains. Furthermore, we found that enforced neuronal ISG12 expression results in a significant delay in Sindbis virus-induced death in neonatal mice. Together, our data identify genes that are developmentally regulated in the CNS and genes that are differentially regulated in the brains of different aged mice in response to Sindbis virus infection.  相似文献   

14.
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI).The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo.IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation.We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice.Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6,TNF-α,G-CSF,KC,and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/-mice in comparison with that of wild type infected mice.The adaptive immune response against the H1N1 virus in IL-1R1-/-mice was impaired with downregulated anti-viral Th1 cell,CD8+ cell,and antibody functions,which contributes to attenuated viral clearance.Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/-mice compared with that in WT infected mice.Moreover,the infected IL-1R1-/-mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung.Together,these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury,particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.  相似文献   

15.
Influenza A virus (IAV) preferentially infects conducting airway and alveolar epithelial cells in the lung. The outcome of these infections is impacted by the host response, including the production of various cytokines, chemokines, and growth factors. Fibroblast growth factor-9 (FGF9) is required for lung development, can display antiviral activity in vitro, and is upregulated in asymptomatic patients during early IAV infection. We therefore hypothesized that FGF9 would protect the lungs from respiratory virus infection and evaluated IAV pathogenesis in mice that overexpress FGF9 in club cells in the conducting airway epithelium (FGF9-OE mice). However, we found that FGF9-OE mice were highly susceptible to IAV and Sendai virus infection compared to control mice. FGF9-OE mice displayed elevated and persistent viral loads, increased expression of cytokines and chemokines, and increased numbers of infiltrating immune cells as early as 1 day post-infection (dpi). Gene expression analysis showed an elevated type I interferon (IFN) signature in the conducting airway epithelium and analysis of IAV tropism uncovered a dramatic shift in infection from the conducting airway epithelium to the alveolar epithelium in FGF9-OE lungs. These results demonstrate that FGF9 signaling primes the conducting airway epithelium to rapidly induce a localized IFN and proinflammatory cytokine response during viral infection. Although this response protects the airway epithelial cells from IAV infection, it allows for early and enhanced infection of the alveolar epithelium, ultimately leading to increased morbidity and mortality. Our study illuminates a novel role for FGF9 in regulating respiratory virus infection and pathogenesis.  相似文献   

16.
Respiratory viral infections result in severe pulmonary injury, to which host immune response may be a significant contributor. At present, it is not entirely clear the extent to which lung injury is a necessary consequence of host defense. In this report, we use functional genomics approach to characterize the key roles of cellular immunity and immune-inflammatory response in the immunopathology of Sendai virus infection in resistant C57BL/6J and susceptible DBA/2J mice. Infected mice manifested an immune-inflammatory response characterized by the pulmonary influx of neutrophils and mononuclear cells. DBA/2J mice mounted a vigorous immune response, with significant up-regulation of cytokine/chemokine genes in two successive waves through the course of infection. Whereas, C57BL/6J mice displayed an efficient immune response with less severe pathology and clusters of immune-inflammatory responsive genes were exclusively up-regulated on day 4 in this strain. Overall, DBA/2J mice exhibited a dysregulated hyper-inflammatory cytokine/chemokine cascades that does not limit viral spread resulting in a predisposition to severe lung pathology. This response is similar to severe human respiratory paramyxovirus infections, which will serve as a model for the elucidation of hyper-immune inflammatory response that result to severe immunopathology in respiratory viral infections.  相似文献   

17.
Abstract: Mice infected with the retrovirus mixture designated LP-BM5 murine leukemia virus (MuLV) develop an immunosuppressive disease. Quinolinic acid (QUIN) is an endogenous neurotoxic N -methyl- d -aspartate agonist that may contribute to the pathogenesis of HIV-associated neurologic disease. In the present study, the levels of QUIN in brain and blood were measured in mice infected with LP-BM5 MuLV and compared with those in uninfected mice and mice infected with the nonpathogenic strain of ecotropic MuLV (helper component of LP-BM5 MuLV). Infection with LP-BM5 MuLV resulted in progressive increases in blood QUIN levels beginning 2 weeks after inoculation that peaked by 16 weeks postinfection. QUIN levels were also increased in cerebral cortex, hippocampus, and striatum. In systemic tissues, QUIN levels were increased in lung, liver, and spleen. In contrast, infection with the ecotropic viral component of the LP-BM5 MuLV mixture was not associated with any changes in brain, blood, or systemic tissue QUIN levels, even though helper virus burdens were comparable to those in mice infected with LP-BM5 MuLV. Treatment of LP-BM5 MuLV-infected mice with the antiretroviral agent zidovudine (azidothymidine) significantly reduced blood and brain QUIN levels in association with reductions in viral load in brain and spleen. These observations suggest that elevated QUIN production is not attributable to productive infection with retrovirus per se but occurs in response to an agent or agents, such as cytokines, that are produced by the host in response to virus infection.  相似文献   

18.
Aims: To investigate whether intranasal Lactobacillus administration protects host animals from influenza virus (IFV) infection by enhancing respiratory immune responses in a mouse model. Methods and Results: After 3 days of intranasal exposure to Lactobacillus rhamnosus GG (LGG), BALB/c mice were infected with IFV A/PR/8/34 (H1N1). Mice treated with LGG showed a lower frequency of accumulated symptoms and a higher survival rate than control mice (P < 0·05). The YAC‐1 cell‐killing activity of lung cells isolated from mice treated with LGG was significantly greater than those isolated from control mice (P < 0·01). Intranasal administration of LGG significantly increased mRNA expression of interleukin (IL)‐1β, tumour necrosis factor (TNF) and monocyte chemotactic protein (MCP)‐1 (P < 0·01). Conclusions: These results suggest that intranasal administration of LGG protects the host animal from IFV infection by enhancing respiratory cell‐mediated immune responses following up‐regulation of lung natural killer (NK) cell activation. Significance and Impact of Study: We have demonstrated that probiotics might protect host animals from viral infection by stimulating immune responses in the respiratory tract.  相似文献   

19.
We demonstrated that IL-12 was induced during primary or secondary pulmonary adenoviral infection in wild-type (wt) mice. However, cellular responses were not compromised in the lungs of IL-12-/- mice. The level of IFN-gamma in the lung was similar in wt and IL-12-/- mice during pulmonary viral infection. Upon Ag stimulation in vitro, lymphocytes from draining lymph nodes or spleen of infected IL-12-/- mice released large amounts of IFN-gamma, but not IL-4, which were comparable to those released by wt lymphocytes. Furthermore, a predominantly IgG2a response to adenoviral infection was unimpaired in IL-12-/- mice. These significant anti-adenoviral Th1-type responses in IL-12-/- mice led to an efficient clearance of virus-infected cells in the lung. Whether IL-18 was involved in IL-12-independent anti-adenoviral immune responses was investigated. Abrogation of endogenous IL-18 by an Ab resulted in diminished IFN-gamma release and lymphocytic infiltrate in the lung during adenoviral infection. Nevertheless, the development of lymphocytes of the Th1 phenotype was unimpaired in the absence of both IL-12 and IL-18. In contrast to their intact ability to mount Th1-type responses to viral infection, IL-12-/- mice suffered impaired Th1-type immune responses to pulmonary mycobacterial infection. Our findings suggest that IL-12, although induced, is not required for Th1-type responses to respiratory viral infection, in contrast to mycobacterial infection. IL-18 is required for the optimal release of IFN-gamma in the lung during viral infection, but is not required for the generation of virus-reactive Th1-type lymphocytes. Th1 differentiation during respiratory adenoviral infection may involve molecules different from IL-12 or IL-18.  相似文献   

20.
There is an incomplete understanding of the differences between neonatal immune responses that contribute to the increased susceptibility of neonates to some viral infections. We tested the hypothesis that neonates are more susceptible than adults to mouse adenovirus type 1 (MAV-1) respiratory infection and are impaired in the ability to generate a protective immune response against a second infection. Following intranasal infection, lung viral loads were greater in neonates than in adults during the acute phase but the virus was cleared from the lungs of neonates as efficiently as it was from adult lungs. Lung gamma interferon (IFN-γ) responses were blunted and delayed in neonates, and lung viral loads were higher in adult IFN-γ(-/-) mice than in IFN-γ(+/+) controls. However, administration of recombinant IFN-γ to neonates had no effect on lung viral loads. Recruitment of inflammatory cells to the airways was impaired in neonates. CD4 and CD8 T cell responses were similar in the lungs of neonates and adults, although a transient increase in regulatory T cells occurred only in the lungs of infected neonates. Infection of neonates led to protection against reinfection later in life that was associated with increased effector memory CD8 T cells in the lungs. We conclude that neonates are more susceptible than adults to acute MAV-1 respiratory infection but are capable of generating protective immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号