首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naive T cells receive stimulation from the positive selecting ligand in the periphery for their survival. This stimulation does not normally lead to overt activation of T cells, as the T cells remain largely quiescent until they receive either antigenic or lymphopenic stimuli. The underlying mechanism responsible for survival and quiescence of the naive T cells remains largely unknown. In this study, we report that T cell-specific deletion of Tsc1, a negative regulator of mammalian target of rapamycin, resulted in both spontaneous losses of quiescence and cellularity, especially within the CD8 subset. The Tsc1-deficient T cells have increased cell proliferation and apoptosis. Tsc1 deletion affects the survival and quiescence of T cells in the absence of antigenic stimulation. Loss of quiescence but not cellularity was inhibited by rapamycin. Our data demonstrate that tuberous sclerosis complex-mammalian target of rapamycin maintains quiescence and survival of T cells.  相似文献   

2.
3.
T lymphocytes (T cells) undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.  相似文献   

4.
Folate is required for one-carbon transfer reactions and the formation of purines and pyrimidines for DNA and RNA synthesis. Deficiency of folate can lead to many clinical abnormalities, including macrocytic anemia, cardiovascular diseases, birth defects, and carcinogenesis. The nucleotide imbalance due to folate deficiency causes cell cycle arrest in the S phase and uracil misincorporation into DNA, which may result in DNA double-strand breaks during repair. The role of folate in the immune system has not been fully characterized. We cultured PHA-activated human T lymphocytes in varying concentrations of folate, and measured proliferation, cell cycle, apoptosis, uracil misincorporation, and proportions of Th cells (CD4(+)) and cytotoxic T (CD8(+)) cells. Folate deficiency reduced proliferation of T lymphocytes, induced cell cycle arrest in the S phase, induced apoptosis, and increased the level of uracil in DNA. Folate deficiency also increased the CD4(+) to CD8(+) ratio due to a marked reduction of CD8(+) cell proliferation. Folate or nucleoside repletion of folate-deficient cells rapidly restored T lymphocyte proliferation and normal cell cycle, reduced the DNA uracil content, and lowered the CD4(+) to CD8(+) ratio. These data suggest that folate status may affect the immune system by reducing the capacity of CD8(+) cells to proliferate in response to activation.  相似文献   

5.
IL-7 plays a major role in T lymphocyte homeostasis and has been proposed as an immune adjuvant for lymphopenic patients. This prospect is based, at least in part, on the short-term expansion of peripheral T cells in rIL7-treated mice and primates. Nevertheless, in vivo, following initial increases in T cell proliferation and numbers, lymphocytes return to a quiescent state. As the bases for this cell cycle exit have not yet been elucidated, it is important to assess the long-term biological effects of IL-7 on quiescent human T lymphocyte subsets. In this study, we find that IL-7-stimulated CD4+ naive lymphocytes enter into cell cycle with significantly delayed kinetics as compared with the memory population. Importantly though, these lymphocytes exit from the cell cycle despite the continuous replenishment of rIL-7. This response is distinct in memory and naive CD4+ lymphocytes with memory cells starting to exit from cycle by day 10 vs day 18 for naive cells. Return to quiescence is associated with a cessation in IL-7R signaling as demonstrated by an abrogation of STAT-5 phosphorylation, despite an up-regulation of surface IL-7Ralpha. Indeed, an initial 10-fold decrease in IL-7Ralpha mRNA levels is followed by increased IL-7Ralpha expression in naive as well as memory T cells, with kinetics paralleling cell cycle exit. Altogether, our data demonstrate that IL-7 promotes the extended survival of both naive and memory CD4+ T cells, whereas cycling of these two subsets is distinct and transient. Thus, IL-7 therapy should be designed to allow optimal responsiveness of naive and memory T cell subsets.  相似文献   

6.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

7.
Prior studies by our laboratory demonstrated that a single injection of morphine produces dose-dependent, naltrexone-reversible, suppressive effects in assays of mitogen-stimulated lymphocyte proliferation and natural killer (NK) cell cytotoxicity in the spleen. The present study used flow cytometry to assess directly whether acute morphine treatment produces these immune alterations by altering the leukocyte composition of the spleen. In agreement with our previous findings, morphine suppressed the concanavalin A-stimulated proliferation of T cells, lipopolysaccharide-stimulated proliferation of B cells, and NK cell cytotoxicity in the spleen. However, the same morphine treatment protocol did not alter the total number of splenic leukocytes, the percentage of live splenic leukocytes (as assessed by forward-scatter versus side-scatter histograms), or the relative number of CD4(+)CD3(+) T cells, CD8(+)CD3(+) T cells, CD45RA/B(+) B cells, NKR-P1A(hi)CD3(-) NK cells, NKR-P1A(lo)CD3(+) T cells, CD11b/c(+)HIS48(-) monocytes/macrophages, or CD11b/c(+)HIS48(+) granulocytes in the spleen. These findings indicate that the effects of a single sc dose of morphine on functional measures of immune status in the spleen do not result from a redistribution of splenic leukocytes; instead, morphine's effects likely result from direct alterations in leukocyte activities.  相似文献   

8.
9.
Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU) model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose) and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC), lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure) result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and simulated microgravity effects on hematopoietic, specifically immune cells.  相似文献   

10.
The regulation of T cell expansion by TNFR family members plays an important role in determining the magnitude of the immune response to pathogens. As several members of the TNFR family, including glucocorticoid-induced TNFR-related protein (GITR), are found on both regulatory and effector T cells, there is much interest in understanding how their effects on these opposing arms of the immune system affect disease outcome. Whereas much work has focused on the role of GITR on regulatory T cells, little is known about its intrinsic role on effector T cells in an infectious disease context. In this study, we demonstrate that GITR signaling on CD8 T cells leads to TNFR-associated factor (TRAF) 2/5-dependent, TRAF1-independent NF-κB induction, resulting in increased Bcl-x(L). In vivo, GITR on CD8 T cells has a profound effect on CD8 T cell expansion, via effects on T cell survival. Moreover, GITR is required on CD8 T cells for enhancement of influenza-specific CD8 T cell expansion upon administration of agonistic anti-GITR Ab, DTA-1. Remarkably, CD8 T cell-intrinsic GITR is essential for mouse survival during severe, but dispensable during mild respiratory influenza infection. These studies highlight the importance of GITR as a CD8 T cell costimulator during acute viral infection, and argue that despite the similarity among several TNFR family members in inducing T lymphocyte survival, they clearly have nonredundant functions in protection from severe infection.  相似文献   

11.
BACKGROUND: Reconstitution of the immune system following allogeneic stem-cell transplantation is a complex process that requires successful engraftment of the hematopoietic stem cell, as well as adequate thymic function. As the majority of patients have reduced thymic function due to age, hormonal changes, as well as the damage caused by conditioning and GvHD, immune recovery is often delayed and incomplete. Following graft infusion there is rapid proliferation of natural killer (NK) cells that appear to proceed directly from the hematopoietic stem cell. B-cell function is dependent on specific maturation development in the BM micro-environment, as well as CD4 help. The CD8 population expands rapidly due to proliferation of many memory cells that react against Class I Ags, as well as viral molecules. Expansion of T-helper cells originates mainly from the memory pool that is present in the bone marrow graft. Naive cells require competent thymus hence the CD4 cell counts may be subnormal with clinical immunodeficiency. Controversy remains as to the capacity of the thymus to recover and thus extra thymic proliferation of T cells have been postulated. However these cells appear to have a limited capacity to expand and a fixed repertoire. DISCUSSION: Donor lymphocyte infusions may contribute a competent CD4 population that can cause GvHD, but have limitations in the capacity to respond to new antigens. Future research needs to be concentrated on improving the capacity of the thymus to reconstitute a functional naive population.  相似文献   

12.
Progestagen-associated endometrial protein (PAEP) is a glycoprotein of the lipocalin family that acts as a negative regulator of T cell receptor-mediated activation. However, the function of tumor-derived PAEP on the human immune system in the tumor microenvironment is unknown. PAEP is highly expressed in intermediate and thick primary melanomas (Breslow’s 2.5mm or greater) and metastatic melanomas, correlating with its expression in daughter cell lines established in vitro. The current study investigates the role of melanoma cell-secreted PAEP protein in regulating T cell function. Upon the enrichment of CD3+, CD4+ and CD8+ T cells from human peripheral blood mononuclear cells, each subset was then mixed with either melanoma-derived PAEP protein or PAEP-poor supernatant of gene-silenced tumor cells. IL-2 and IFN-γ secretion of CD4+ T cells significantly decreased with the addition of PAEP-rich supernatant. And the addition of PAEP-positive cell supernatant to activated lymphocytes significantly inhibited lymphocyte proliferation and cytotoxic T cell activity, while increasing lymphocyte apoptosis. Our result suggests that melanoma cell-secreted PAEP protein immunosuppresses the activation, proliferation and cytotoxicity of T lymphocytes, which might partially explain the mechanism of immune tolerance induced by melanoma cells within the tumor microenvironment.  相似文献   

13.
14.
Costimulatory Effect of Fas in Mouse T Lymphocytes   总被引:1,自引:0,他引:1  
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

15.
To induce proper immune responses, T lymphocytes require two types of stimuli, antigen-specific and costimulatory signals. Among costimulatory molecules, CD28-engagement promotes the survival and proliferation of both naive and memory T cells. In addition, it is now believed that Fas may play a role in T cell activation in the human system. It is, however, controversial whether Fas can act as a costimulatory signal in the murine system. Thus, we investigated fundamental differences in the capacity to induce proliferation of T cells between Fas and CD28 in mice. Fas-mediated T cell proliferation was observed only with a full mitogenic dose of anti-CD3 antibodies, whereas CD28 engagement was able to enhance T cell proliferation in the presence of a suboptimal level of anti-CD3 antibody. Furthermore, Fas-engaged T cells showed faster response in the upregulation of CD25 and CD69 expression than CD28-engaged ones. Here, we report that Fas might play a role in mature T cell activation in the mouse system through a different mechanism from that in CD28 costimulation.  相似文献   

16.
Dendritic cells (DCs) are the most professional antigen-presenting cells of the mammalian immune system. They are able to phagocytize, process antigen materials, and then present them to the surface of other cells including T lymphocytes in the immune system. These capabilities make DC therapy become a novel and promising immune-therapeutic approach for cancer treatment as well as for cancer vaccination. Many trials of DC therapy to treat cancers have been performed and have shown their application value. They involve harvesting monocytes or hematopoietic stem cells from a patient and processing them in the laboratory to produce DCs and then reintroduced into a patient in order to activate the immune system. DCs were successfully produced from peripheral, umbilical cord blood-derived monocytes or hematopoietic stem cells. In this research, we produced DCs from human menstrual blood-derived monocytes. Briefly, monocytes were isolated by FACS based on FSC vs. SSC plot from lysed menstrual blood. Obtained monocytes were induced into DCs by a two-step protocol. In the first step, monocytes were incubated in RPMI medium supplemented with 2% FBS, GM-CSF, and IL-4, followed by incubation in RPMI medium supplemented with α-TNF in the second step. Our data showed that induced monocytes had typical morphology of DCs, expressed HLA-DR, HLA-ABC, CD80 and CD86 markers, exhibited uptake of dextran-FITC, stimulated allogenic T cell proliferation, and released IL-12. These results demonstrated that menstrual blood can not only be a source of stromal stem cell but also DCs, which are a potential candidate for immune therapy.  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) has been described as an efficient growth inhibitor that maintains the CD34(+) hematopoietic progenitor cells in quiescence. The concept of high proliferative potential-quiescent cells or HPP-Q cells has been introduced as a working model to study the effect of TGF-beta1 in maintaining the reversible quiescence of the more primitive hematopoietic stem cell compartment. HPP-Q cells are primitive quiescent stem/progenitor cells on which TGF-beta1 has downmodulated the cytokine receptors. These cells can be released from quiescence by neutralization of autocrine or endogenous TGF-beta1 with a TGF-beta1 blocking antibody or a TGF-beta1 antisense oligonucleotide. In nonhematopoietic systems, TGF-beta1 cooperates with the cyclin-dependent kinase inhibitor, p21(cip1), to induce cell cycle arrest. We therefore analyzed whether endogenous TGF-beta1 controls the expression of the p21(cip1) in the CD34(+) undifferentiated cells using a sensitive in situ hybridization method. We observed that addition of anti-TGF-beta1 is followed by a rapid decrease in the level of p21(cip1) mRNA whereas TGF-beta1 enhances p21(cip1) mRNA expression concurrently with an inhibitory effect on progenitor cell proliferation. These results suggest the involvement of p21(cip1) in the cell cycle control of early human hematopoietic quiescent stem/progenitors and not only in the differentiation of more mature myeloid cells as previously described. The modulation of p21(cip1) observed in response to TGF-beta1 allows us to further precise the working model of high proliferative potential-quiescent cells.  相似文献   

18.
The higher prevalence of autoimmune disease among women compared with men suggests that steroids impact immune regulation. To investigate how sex steroids modulate cellular immune function, we conducted a randomized trial in 12 healthy men aged 35-55 yr treated for 28 days with placebo, a GnRH antagonist, acyline to induce medical castration, or acyline plus daily testosterone (T) gel to replace serum T, followed by a 28-day recovery period. Serum hormones were measured weekly and peripheral blood lymphocytes (PBLs) were collected biweekly for analyses of thymus-derived lymphocyte (T cell) subtypes and natural killer (NK) cells. Compared with the other groups and to baseline throughout the drug exposure period, men receiving acyline alone had significant reductions in serum T (near or below castrate levels), dihydrotestosterone, and estradiol (P < 0.05). Medical castration significantly reduced the percentage of CD4+ CD25+ T cells (P < 0.05), decreased mitogen-induced CD8+ T cell IFN-gamma expression, and increased the percentage of NK cells without affecting the ratio of CD4+ to CD8+ T cells and the expression of NK cell-activating receptor NKG2D or homing receptor CXCR1. No changes in immune composition were observed in subjects receiving placebo or acyline with replacement T. These data suggest that T and/or its metabolites may help maintain the physiological balance of autoimmunity and protective immunity by preserving the number of regulatory T cells and the activation of CD8+ T cells. In addition, sex steroids suppress NK cell proliferation. This study supports a complex physiological role for T and/or its metabolites in immune regulation.  相似文献   

19.
In this paper we compare survival characteristics of transgenic and polyclonal CD4 and CD8 T cells. Transgenic CD4 T cells have an intrinsically lower capacity for survival, reflected in their gradual disappearance in thymectomized hosts, their increased sensitivity to apoptosis in vitro, and fewer divisions during homeostatic proliferation upon transfer into syngeneic lymphopenic hosts compared with CD8 T cells. Homeostatic proliferation, however, does not generally result in phenotypic conversion of activation markers unless cognate or cross-reactive Ag is present. T cells from the A18 TCR transgenic strain normally selected into the CD4 lineage are fragile as CD4 T cells, yet display the typical robust survival pattern of CD8 T cells when diverted into the CD8 lineage in a CD4-deficient host. Polyclonal CD4 and CD8 T cells also show distinctive patterns of survival, emphasizing that survival signals are relayed differently in the two lymphocyte subpopulations. However, expression levels of Bcl-2 in either transgenic or polyclonal naive CD4 and CD8 T cells are similar, excluding a role for this molecule as a key factor in differential survival of CD4 vs CD8 T cells.  相似文献   

20.
T lymphocyte survival, proliferation, and death in the periphery are dependent on several cytokines. Many of these cytokines induce the expression of suppressor of cytokine signaling-1 (SOCS1), a feedback inhibitor of JAK kinases. However, it is unclear whether the cytokines that regulate T lymphocyte homeostasis are critically regulated by SOCS1 in vivo. Using SOCS1(-/-)IFN-gamma(-/-) mice we show that SOCS1 deficiency causes a lymphoproliferative disorder characterized by decreased CD4/CD8 ratio due to chronic accumulation of CD8+CD44(high) memory phenotype T cells. SOCS1-deficient CD8+ T cells express elevated levels of IL-2Rbeta, show increased proliferative response to IL-15 and IL-2 in vitro, and undergo increased bystander proliferation and vigorous homeostatic expansion in vivo. Sorted CD8+CD44(high) T cells from SOCS1(-/-)IFN-gamma(-/-) mice respond 5 times more strongly than control cells, indicating that SOCS1 is a critical regulator of IL-15R signaling. Consistent with this idea, IL-15 stimulates sustained STAT5 phosphorylation in SOCS1-deficient CD8+ T cells. IL-15 strongly induces TNF-alpha production in SOCS1-deficient CD8+ T cells, indicating that SOCS1 is also a critical regulator of CD8+ T cell activation by IL-15. However, IL-15 and IL-2 induce comparable levels of Bcl-2 and Bcl-x(L) in SOCS1-deficient and SOCS1-sufficient CD8+ T cells, suggesting that cytokine receptor signals required for inducing proliferation and cell survival signals are not identical. These results show that SOCS1 differentially regulates common gamma-chain cytokine signaling in CD8+ T cells and suggest that CD8+ T cell homeostasis is maintained by distinct mechanisms that control cytokine-mediated survival and proliferation signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号