首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The origin of the eukaryotic cell nucleus and the selective forces that drove its evolution remain unknown and are a matter of controversy. Autogenous models state that both the nucleus and endoplasmic reticulum (ER) derived from the invagination of the plasma membrane, but most of them do not advance clear selective forces for this process. Alternative models proposing an endosymbiotic origin of the nucleus fail to provide a pathway fully compatible with our knowledge of cell biology. We propose here an evolutionary scenario that reconciles both an ancestral endosymbiotic origin of the eukaryotic nucleus (endosymbiosis of a methanogenic archaeon within a fermentative myxobacterium) with an autogenous generation of the contemporary nuclear membrane and ER from the bacterial membrane. We specifically state two selective forces that operated sequentially during its evolution: (1) metabolic compartmentation to avoid deleterious co-existence of anabolic (autotrophic synthesis by the methanogen) and catabolic (fermentation by the myxobacterium) pathways in the cell, and (2) avoidance of aberrant protein synthesis due to intron spreading in the ancient archaeal genome following mitochondrial acquisition and loss of methanogenesis.  相似文献   

2.
3.
4.
Selective forces in the emergence of the seed habit   总被引:1,自引:0,他引:1  
The evolution of the seed is one of the major events in the history of land plants. In this paper, we consider the suite of characters that define the seed habit, and discuss the probable selective pressures that produced each character. Our major conclusion is that most characters are a direct consequence of the origin of heterospory and of natural selection for propagules with larger food reserves.
Seeds are traditionally defined by the possession of integuments. However, some heterosporous pteridophytes possess integument-like structures. Therefore, integuments cannot explain the evolutionary success of seed plants. Rather, we believe that the decisive character in this success is related to pollination. Seed plants differ from other heterosporous lineages in the capture of microspores before dispersal of the 'megaspore'. Modern gymnosperms all possess mechanisms whereby the maternal sporophyte withholds resources from potential propagules that have not been pollinated and/or fertilized. This represents an increase in efficiency over Pteridophytic reproduction. Wind-pollination means the propagule is vulnerable to pathogens that mimic pollen, and pathogen pressures may have contributed to some seed characters.  相似文献   

5.
Complementation of in vitro-assembled spliceosomes   总被引:1,自引:0,他引:1  
We describe the development and application of a system of in vitro-assembled splicing complexes that can be used for the identification of protein splicing factors which become associated with the spliceosome at the end of the assembly process ("late" splicing components). A splicing reaction performed in the presence of polyvinyl alcohol is interrupted after 15 to 20 minutes, before the appearance of splicing intermediates and products in significant amounts. Following low-speed centrifugation, a pellet is obtained containing splicing complexes that can be solubilized with 0.6 M-KCl. These complexes can be rapidly complemented for splicing in the presence of ATP and Mg2+ with protein factors that are present in HeLa cell nuclear extracts or in chromatographic extract fractions. Biochemical features of the complementation reactions, and conditions for reversible uncoupling of the two splicing steps, are described and discussed. These conditions are used to generate fully assembled spliceosomes in which splicing of the pre-mRNA can occur in the presence of ATP and Mg2+, but in the absence of nuclear extract ("autonomous splicing").  相似文献   

6.
Purification and visualization of native spliceosomes   总被引:38,自引:0,他引:38  
R Reed  J Griffith  T Maniatis 《Cell》1988,53(6):949-961
Mammalian spliceosomes were purified in preparative amounts by gel filtration chromatography and shown to be functional by in vitro complementation experiments. The column fractions containing spliceosomes are enriched in the snRNAs U1, U2, U4, U5, and U6 and a subset of proteins present in the nuclear extract. Splicing intermediates, the entire set of snRNAs, and the enriched proteins can be immunoprecipitated with three different monoclonal antibodies that recognize snRNP determinants. At least one U1 snRNP is present in each spliceosome since the particles are quantitatively immunoprecipitated by an anti-U1 snRNP monoclonal antibody. Examination of the spliceosome fractions by EM revealed a relatively homogeneous population of 40-60 nm particles with a striking morphology. Evidence that these particles are spliceosomes is their sensitivity to micrococcal nuclease, their ATP-dependent assembly, and their immunoprecipitation with a trimethyl cap monoclonal antibody. In addition, pre-mRNA was visualized in the particles by EM.  相似文献   

7.
A two-dimensional nonlinear integro-differential equation with time-varying coefficients describing the behavior of the fluttering wing-body systems typical of natural flight mechanisms has been deduced from the Navier-Stokes equation which generalizes local pressure and velocity distributions in the externally oscillating air field. The resulting equation for the wing forces is combined with an analogous expression for the forces of gravitation and acceleration associated with the body. The air acceleration force, not previously considered in bio-physical models of insect and bird flight, is shown to arise from a formal analysis of unsteady or time-varying contributions to the velocity field, while the square form of the conventional steady state aerodynamic forces is derived from the intertial terms in the Navier-Stokes equation with the aid of the approximations of Newtonian impact theory. Previous calculations (Houghton, 1964) have indicated that the contribution to gravitational stability of air acceleration and aerodynamic life are roughly in the ratio of 3:1.  相似文献   

8.
Detailed close-ups and the big picture of spliceosomes   总被引:1,自引:0,他引:1  
  相似文献   

9.
The question of whether herbivory can benefit plants remains controversial. A series of papers on the effects of lesser snow geese grazing on grasses in northern Canada is throwing new light on this problem.  相似文献   

10.
11.
12.
We describe characterization of spliceosomes affinity purified under native conditions. These spliceosomes consist largely of C complex containing splicing intermediates. After C complex assembly on an MS2 affinity-tagged pre-mRNA substrate containing a 3' splice site mutation, followed by RNase H digestion of earlier complexes, spliceosomes were purified by size exclusion and affinity selection. This protocol yielded 40S C complexes in sufficient quantities to visualize in negative stain by electron microscopy. Complexes purified in this way contain U2, U5, and U6 snRNAs, but very little U1 or U4 snRNA. Analysis by tandem mass spectrometry confirmed the presence of core snRNP proteins (SM and LSM), U2 and U5 snRNP-specific proteins, and the second step factors Prp16, Prp17, Slu7, and Prp22. In contrast, proteins specific to earlier splicing complexes, such as U2AF and U1 snRNP components, were not detected in C complex, but were present in similarly purified H complex. Images of these spliceosomes revealed single particles with dimensions of approximately 270 x 240 A that assort into well-defined classes. These images represent an important first step toward attaining a comprehensive three-dimensional understanding of pre-mRNA splicing.  相似文献   

13.
We have used an in vivo system generating assayable amounts of a specific pre-mRNA to study the relationship between splicing and an operationally defined nuclear matrix preparation (NM). When NM is prepared by extraction of DNase I-treated nuclei with an approximately physiological concentration of KCl (0.1 M), a portion of NM-associated precursor can be spliced in vitro in the presence of ATP and Mg2+ and in the absence of splicing extract ("autonomous splicing"). We propose that the autonomous reaction, which does not exhibit a temporal lag and is half-complete in 5 min, occurs in fully assembled, matrix-bound ribonucleoprotein complexes (in vivo spliceosomes). Extraction of the NM with concentrations of KCl greater than 0.4 M eliminates autonomous splicing but leaves behind preassembled complexes that can be complemented for splicing with HeLa cell nuclear extract. The splicing complementing factor, representing one or more activities present in the nuclear extract and also in the cytoplasmic S100 fraction, is relatively heat resistant, devoid of an RNA component, and does not bind to DEAE-Sepharose in 0.1 M KCl. It exists in the nucleus in two forms; bound to autonomous spliceosomes and free in the nucleoplasm. Biochemical features of the complementation reaction, and conditions for reversible uncoupling of the two splicing steps are described and discussed.  相似文献   

14.
The spliceosome is a multimegadalton RNA-protein machine that removes noncoding sequences from nascent pre-mRNAs. Recruitment of the spliceosome to splice sites and subsequent splicing require a series of dynamic interactions among the spliceosome's component U snRNPs and many additional protein factors. These dynamics present several challenges for structural analyses, including purification of stable complexes to compositional homogeneity and assessment of conformational heterogeneity. We have isolated spliceosomes arrested before the second chemical step of splicing (C complex) in which U2, U5 and U6 snRNAs are stably associated. Using electron microscopy, we obtained images of C complex spliceosomes under cryogenic conditions and determined a three-dimensional structure of a core complex to a resolution of 30 A. The structure reveals a particle of dimensions 27 x 22 x 24 nm with a relatively open arrangement of three primary domains.  相似文献   

15.
16.
17.
18.
M M Konarska  P A Sharp 《Cell》1987,49(6):763-774
Electrophoretic separation of ribonucleoprotein particles in a nondenaturing gel was used to analyze the splicing of mRNA precursors. Early in the reaction, a complex formed consisting of the U2 small nuclear ribonucleoprotein particle (snRNP) bound to sequences upstream of the 3' splice site. This complex is modeled as a precursor of a larger complex, the spliceosome, which contains U2, U4/6, and U5 snRNPs. Conversion of the U2 snRNP-precursor RNA complex to the spliceosome probably involves binding of a single multi-snRNP particle containing U4/6 and U5 snRNPs. The excised intron was released in a complex containing U5, U6, and probably U2 snRNPs. Surprisingly, U4 snRNP was not part of the intron-containing complex, suggesting that U4/6 snRNP disassembles and assembles during splicing. Subsequently, the reassembled U4/6 snRNP would associate with U5 snRNP and participate in de novo spliceosome formation. U1 snRNP was not detected in any of the splicing complexes.  相似文献   

19.
The major histocompatibility complex (MHC) is one of the most diverse regions of the mammalian genome. Diversity in MHC genes is integral to their function in the immune system, and while pathogens play a key role in shaping this diversity, the contribution of other selective forces remains unclear. The controlled breeding of cattle offers an excellent model for the identification and exploration of these forces. We characterized the MHC class I genes present in a sample of Canadian Holstein A.I. bulls and compared the results with those obtained in an earlier study. No evidence for a reduction in MHC diversity over 20 years was observed, but the relative frequency of some haplotypes had changed: the formerly rare A12 (w12B) haplotype had become the most common, together with A15, while A19, which dominated the earlier sample, had significantly reduced in frequency. Only 7% of bulls in the current study were MHC homozygous compared with the 14% expected under Hardy-Weinberg. To identify the selective forces at work, a gene substitution model was used to calculate the effects of MHC on selection traits using estimated breeding values for each bull. Significant associations between MHC and production, disease and fertility traits were identified, suggesting that MHC diversity is not merely shaped by disease in this controlled breeding system. The decrease in a common haplotype, the reduced number of homozygous bulls and the associations with disease and production traits together indicate that MHC diversity in dairy cattle is maintained by heterozygote advantage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号