首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Recently, high-throughput screening (HTS) has become the mainstream technique for drug discovery. Compounds that are synthesized by combinatorial chemistry might be more suitable than natural products to apply to HTS, because the purification procedure is a drawback of using natural products. Nevertheless, natural products remain an extremely important source of drugs. To overcome the demerits of natural products, we are constructing the RIKEN Natural Products Depository (NPDepo) that is focused primarily on microbial metabolites. In this review, I describe (i) engineering pathways for biosynthetic gene clusters of microbial metabolites, (ii) construction of fraction libraries of microbial metabolites, and (iii) the development of a new screening system using a chemical array and a protein library produced by GLORIA.  相似文献   

2.
Natural products have been utilized for drug discovery. To increase the source diversity, we generated a new chemical library consisting of chemically modified microbial metabolites termed 'Unnatural Natural Products' by chemical conversion of microbial metabolites in crude broth extracts followed by purification of reaction products with the LC-photo diode array-MS system. Using this library, we discovered an XIAP inhibitor, C38OX6, which restored XIAP-suppressed enzymatic activity of caspase-3 in vitro. Furthermore, C38OX6 sensitized cancer cells to anticancer drugs, whereas the unconverted natural product did not. These findings suggest that our library could be a useful source for drug seeds.  相似文献   

3.
Cancer cells can reprogram their metabolic machinery to survive. This altered metabolism, which is distinct from the metabolism of normal cells, is thought to be a possible target for the development of new cancer therapies. In this study, we constructed a screening system that focuses on bioenergetic profiles (specifically oxygen consumption rate and extracellular acidification rate) and characteristic proteomic changes. Thus, small molecules that target cancer-specific metabolism were investigated. We screened the chemical library of RIKEN Natural Products Depository (NPDepo) and found that unantimycin A, which was recently isolated from the fraction library of microbial metabolites, and NPL40330, which is derived from a chemical library, inhibit mitochondrial respiration. Furthermore, we developed an in vitro reconstitution assay method for mitochondrial electron transport chain using semi-intact cells with specific substrates for each complex of the mitochondrial electron transport chain. Our findings revealed that NPL40330 and unantimycin A target mitochondrial complexes I and III, respectively.  相似文献   

4.
Methyl protodioscin (1), a natural furostanol biglycoside steroid, was a preclinical anticancer drug, which showed potent activity against most cell lines from leukemia and solid tumors in the National Cancer Institute's (NCI) human cancer panel. Metabolism of methyl protodioscin by Aspergillus niger was investigated. Seven metabolites were isolated and identified. Two main metabolites were pregnane glycosides and four were furostanol glycosides, together with the aglycone. It was found that steroidal saponin skeleton could be converted to pregnenolone skeleton only using microbial methods, which must have chemical procedures in the reported literatures. The proposed biosynthetic pathways of the microbial conversion products of methyl protodioscin were drawn. The found enriched the reaction types of microbial bioconversion and provided a new producing way of androstenedione from steroid. Most metabolites showed strong cytotoxic activities against HepG2, NCI-H460, HeLa, and MCF-7 cell lines.  相似文献   

5.
The recent increase and availability of whole genome sequences have revised our view of the metabolic capabilities of microorganisms. From these data, a large number of orphan biosynthesis pathways have been identified by bio-informatics. Orphan biosynthetic pathways are gene clusters for which the encoded natural product is unknown. It is worthy to note that the number of orphan pathways coding for putative natural products outnumbers by far the number of currently known metabolites for a given organism. Whilst Streptomyces coelicolor was known to produce only 4 secondary metabolites, the genome analysis revealed 18 additional orphan biosynthetic pathways. It is intriguing to note that this is not a particular case because analysis of other microbial genomes originating from myxobacteria, cyanobacteria and filamentous fungi showed the presence of a comparable or even larger number of orphan pathways. The discovery of these numerous pathways represents a treasure trove, which is likely to grow exponentially in the future, uncovering many novel and possibly bio-active compounds. The few natural products that have been correlated with their orphan pathway are merely the tip of the iceberg, whilst plenty of metabolites await discovery. The recent strategies and methods to access these promising hidden natural products are discussed in this review.  相似文献   

6.
微生物天然产物具有丰富的化学结构多样性和诱人的生物活性,持续启迪着创新医药和农药的发现。近年来,随着高通量测序技术的快速发展,巨大的微生物基因组数据揭示了多样生物合成和新颖天然产物的潜能远高于以前的认知。然而,如何高效地激活隐性的生物合成基因簇 (BGCs) 并识别相应的化合物,以及避免已知代谢产物的重复发现等挑战依然严峻。本文描述了面对这些问题时基因组学、生物信息学、机器学习、代谢组学、基因编辑和合成生物学等新技术在发现药用先导化合物过程中提供的机遇;总结并论述了在潜力菌株优选、BGCs的生物信息学预测、沉默 BGCs的高效激活以及目标产物的识别和跟踪方面的新见解;提出了基于潜力菌株选择和多组学挖掘技术从微生物天然产物中高效发现先导结构的系统线路 (SPLSD),并讨论了未来天然产物药用先导发现的机遇和挑战。  相似文献   

7.
The integration of chemical ecology and bacterial genome mining can enhance the discovery of structurally diverse natural products in functional contexts. By examining bacterial secondary metabolism in the framework of its ecological niche, insights into the upregulation of orphan biosynthetic pathways and the enhancement of the enzyme substrate supply can be obtained, leading to the discovery of new secondary metabolic pathways that would otherwise be silent or undetected under typical laboratory cultivation conditions. Access to these new natural products (i.e., the chemotypes) facilitates experimental genotype-to-phenotype linkages. Here, we describe certain functional natural products produced by Xenorhabdus and Photorhabdus bacteria with experimentally linked biosynthetic gene clusters as illustrative examples of the synergy between chemical ecology and bacterial genome mining in connecting genotypes to phenotypes through chemotype characterization. These Gammaproteobacteria share a mutualistic relationship with nematodes and a pathogenic relationship with insects and, in select cases, humans. The natural products encoded by these bacteria distinguish their interactions with their animal hosts and other microorganisms in their multipartite symbiotic lifestyles. Though both genera have similar lifestyles, their genetic, chemical, and physiological attributes are distinct. Both undergo phenotypic variation and produce a profuse number of bioactive secondary metabolites. We provide further detail in the context of regulation, production, processing, and function for these genetically encoded small molecules with respect to their roles in mutualism and pathogenicity. These collective insights more widely promote the discovery of atypical orphan biosynthetic pathways encoding novel small molecules in symbiotic systems, which could open up new avenues for investigating and exploiting microbial chemical signaling in host–bacteria interactions.  相似文献   

8.
微生物肽类次级代谢产物是一类重要的天然产物,因含有稀有氨基酸而具有丰富的化学结构和生物活性。随着微生物天然产物分离纯化技术的发展,新型肽类产物层出不穷,在微生物次级代谢产物的研究领域扮演了重要的角色。本文综述近年来发现的来自细菌和真菌的微生物肽类代谢产物,以及采用基因挖掘等手段人工合成的新型肽类产物,并结合近年来本团队昆虫病原线虫共生菌肽类产物的研究积累,分析微生物肽类产物研究存在的问题及可能的解决方案,以期为微生物导向的新型活性肽类产物的深入发掘和应用研究提供参考。  相似文献   

9.
Nonribosomal peptides (NRPs) are a class of microbial secondary metabolites that have a wide variety of medicinally important biological activities, such as antibiotic (vancomycin), immunosuppressive (cyclosporin A), antiviral (luzopeptin A) and antitumor (echinomycin and triostin A) activities. However, many microbes are not amenable to cultivation and require time-consuming empirical optimization of incubation conditions for mass production of desired secondary metabolites for clinical and commercial use. Therefore, a fast, simple system for heterologous production of natural products is much desired. Here we show the first example of the de novo total biosynthesis of biologically active forms of heterologous NRPs in Escherichia coli. Our system can serve not only as an effective and flexible platform for large-scale preparation of natural products from simple carbon and nitrogen sources, but also as a general tool for detailed characterizations and rapid engineering of biosynthetic pathways for microbial syntheses of novel compounds and their analogs.  相似文献   

10.
Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.  相似文献   

11.
Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/.  相似文献   

12.
13.
Small molecules produced in Nature possess exquisite chemical diversity and continue to be an inspiration for the development of new therapeutic agents. In their host organisms, natural products are assembled and modified using dedicated biosynthetic pathways. By rationally reprogramming and manipulating these pathways, unnatural metabolites containing enhanced structural features that were otherwise inaccessible can be obtained. Additionally, new chemical entities can be synthesized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds.  相似文献   

14.
Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.  相似文献   

15.
Salvatore  Massimo  Francesco 《Phytochemistry》2009,70(9):1082-1091
N-Prenyl secondary metabolites (isopentenylazo-, geranylazo-, farnesylazo- and their biosynthetic derivatives) represent a family of extremely rare natural products. Only in recent years have these alkaloids been recognized as interesting and valuable biologically active secondary metabolites. To date about 35 alkaloids have been isolated from plants mainly belonging to the Rutaceae family, and from fungi, bacteria, and/or obtained by chemical synthesis. These metabolites comprise anthranilic acid derivatives, diazepinones, and indole, and xanthine alkaloids. Many of the isolated prenylazo secondary metabolites and their semisynthetic derivatives are shown to exert valuable in vitro and in vivo anti-cancer, anti-inflammatory, anti-bacterial, anti-viral, and anti-fungal effects. The aim of this comprehensive review is to examine the different types of prenylazo natural products from a chemical, phytochemical and biological perspective.  相似文献   

16.
Versatility of polyketide synthases in generating metabolic diversity   总被引:1,自引:0,他引:1  
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.  相似文献   

17.
During the past few years, the production of natural value-added compounds from microbial sources has gained tremendous importance. Due to an increase in consumer demand for natural products, various food and pharmaceutical industries are continuously in search of novel metabolites obtained from microbial biotransformation. The exploitation of microbial biosynthetic pathways is both feasible and cost effective in the production of natural compounds. The environmentally compatible nature of these products is one major reason for their increasing demand. Novel approaches for natural product biogeneration will take advantage of the current studies on biotechnology, biochemical pathways and microbiology. The interest of the scientific community has shifted toward the use of microbial bioconversion for the production of valuable compounds from natural substrates. The present review focuses on eugenol biotransformation by microorganisms resulting in the formation of various value-added products such as ferulic acid, coniferyl alcohol, vanillin and vanillic acid.  相似文献   

18.
Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.  相似文献   

19.
For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.  相似文献   

20.
The discrimination of distinct cultures among morphologically similar Streptomyces soil isolates (dereplication) and the detection of specific biosynthetic pathways in these strains are important steps in the selection of microorganisms to include in a natural products library. We have developed methods for analysis of actinomycetes using the RiboPrinter microbial characterization system, an automated instrument that performs ribotyping on bacterial samples. To evaluate our dereplication method, 26 Streptomyces isolates, obtained from soil samples collected in Maui, Hawaii, were ribotyped and compared with each other, using the RiboPrinter. The strains were also compared by 16S rDNA sequence analysis, MIDI fatty acid analysis, and LC-MS profiling of fermentation extracts. The RiboPrinter was able to identify closely related isolates and to discriminate between morphologically similar isolates with unique genetic, fatty acid and fermentation profiles. For the detection of biosynthetic genes, a 1,006-bp probe containing a portion of an adenylation domain of a non-ribosomal peptide synthetase (NRPS) was employed. Using this alternate probe in place of the standard ribosomal probe, the RiboPrinter was able to detect NRPS genes in several strains of Streptomyces. These results demonstrate that the RiboPrinter has multiple applications in a natural products research program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号