首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although much is known about the ecological significance of metamorphosis and metamorphic timing, few studies have examined the underlying genetic architecture of these traits, and no study has attempted to associate phenotypic variation to molecular variation in specific genes. Here we report on a candidate gene approach (CGA) to test specific loci for a statistical contribution to variation in metamorphic timing. Three segregating populations (SP1, SP2 and SP3) were constructed utilizing three species of paedomorphic Mexican ambystomatid salamander, including the axolotl, Ambystoma mexicanum. We used these replicated species to test the hypothesis that inheritance of alternate genotypes at two thyroid hormone receptor loci (TRalpha, TRbeta) affects metamorphic timing in ambystomatid salamanders. A significant TRalpha*SP effect indicated that variation in metamorphic timing may be influenced by TRalpha genotype, however, the effect was not a simple one, as both the magnitude and direction of the phenotypic effect depended upon the genetic background. These are the first data to implicate a specific gene in contributing to variation in metamorphic timing. In general, candidate gene approaches can be extended to any number of loci and to any organism where simple genetic crosses can be performed to create segregating populations. The approach is thus of particular value in ecological studies where target genes have been identified but the study organism is not one of the few well-characterized model systems that dominate genetic research.  相似文献   

2.
Individuals of all vertebrate species differ consistently in their reactions to mildly stressful challenges. These typical reactions, described as personalities or coping strategies, have a clear genetic basis, but the structure of their inheritance in natural populations is almost unknown. We carried out a quantitative genetic analysis of two personality traits (exploration and boldness) and the combination of these two traits (early exploratory behaviour). This study was carried out on the lines resulting from a two-directional artificial selection experiment on early exploratory behaviour (EEB) of great tits (Parus major) originating from a wild population. In analyses using the original lines, reciprocal F(1) and reciprocal first backcross generations, additive, dominance, maternal effects ands sex-dependent expression of exploration, boldness and EEB were estimated. Both additive and dominant genetic effects were important determinants of phenotypic variation in exploratory behaviour and boldness. However, no sex-dependent expression was observed in either of these personality traits. These results are discussed with respect to the maintenance of genetic variation in personality traits, and the expected genetic structure of other behavioural and life history traits in general.  相似文献   

3.
Few studies of natural populations have investigated how phenotypic variation across populations relates to key factors in the environment and landscape structure. In the blue tits of southern France, inter-population differences in reproductive life-history traits (e.g. laying date and clutch size) are small, whatever the timing of maximum caterpillar availability, a key factor for offspring survival in tits. These small differences are attributed to gene flow between local populations occupying different habitat types. In contrast, in blue tits on the island of Corsica, we noted large differences in reproductive life-history traits between two populations, where each population is synchronized with the peak-date of caterpillar abundance. These occur over a short geographical distance (25km). Considering our study within a framework of long-term population studies in tits, our results support the hypothesis that different blue tit populations on Corsica show adaptive differences in life-history traits, and suggest that landscape structure at a small spatial scale can have profound effects on adaptive between-population differentiation in life-history traits that are closely linked with fitness.  相似文献   

4.
Currently, there is much debate on the genetic architecture of quantitative traits in wild populations. Is trait variation influenced by many genes of small effect or by a few genes of major effect? Where is additive genetic variation located in the genome? Do the same loci cause similar phenotypic variation in different populations? Great tits (Parus major) have been studied extensively in long‐term studies across Europe and consequently are considered an ecological ‘model organism’. Recently, genomic resources have been developed for the great tit, including a custom SNP chip and genetic linkage map. In this study, we used a suite of approaches to investigate the genetic architecture of eight quantitative traits in two long‐term study populations of great tits—one in the Netherlands and the other in the United Kingdom. Overall, we found little evidence for the presence of genes of large effects in either population. Instead, traits appeared to be influenced by many genes of small effect, with conservative estimates of the number of contributing loci ranging from 31 to 310. Despite concordance between population‐specific heritabilities, we found no evidence for the presence of loci having similar effects in both populations. While population‐specific genetic architectures are possible, an undetected shared architecture cannot be rejected because of limited power to map loci of small and moderate effects. This study is one of few examples of genetic architecture analysis in replicated wild populations and highlights some of the challenges and limitations researchers will face when attempting similar molecular quantitative genetic studies in free‐living populations.  相似文献   

5.
Piertney SB  Webster LM 《Genetica》2010,138(4):419-432
Over the past two decades the fields of molecular ecology and population genetics have been dominated by the use of putatively neutral DNA markers, primarily to resolve spatio-temporal patterns of genetic variation to inform our understanding of population structure, gene flow and pedigree. Recent emphasis in comparative functional genomics, however, has fuelled a resurgence of interest in functionally important genetic variation that underpins phenotypic traits of adaptive or ecological significance. It may prove a major challenge to transfer genomics information from classical model species to examine functional diversity in non-model species in natural populations, but already multiple gene-targeted candidate loci with major effect on phenotype and fitness have been identified. Here we briefly describe some of the research strategies used for isolating and characterising functional genetic diversity at candidate gene-targeted loci, and illustrate the efficacy of some of these approaches using our own studies on red grouse (Lagopus lagopus scoticus). We then review how candidate gene markers have been used to: (1) quantify genetic diversity among populations to identify those depauperate in genetic diversity and requiring specific management action; (2) identify the strength and mode of selection operating on individuals within natural populations; and (3) understand direct mechanistic links between allelic variation at single genes and variance in individual fitness.  相似文献   

6.
Domestication occurs as humans select and cultivate wild plants in agricultural habitats. The amount and structure of variation in contemporary cultivated populations has been shaped, in part, by how genetic material was transferred from one cultivated generation to the next. In some cultivated tree species, domestication involved a shift from sexually reproducing wild populations to vegetatively propagated cultivated populations; however, little is known about how domestication has impacted variation in these species. We employed AFLP data to explore the amount, structure, and distribution of variation in clonally propagated domesticated populations and sexually reproducing wild populations of the Neotropical fruit tree, Spondias purpurea (Anacardiaceae). Cultivated populations from three different agricultural habitats were included: living fences, backyards, and orchards. AFLP data were analysed using measures of genetic diversity (% polymorphic loci, Shannon's diversity index, Nei's gene diversity, panmictic heterozygosity), population structure (F(ST) analogues), and principal components analyses. Levels of genetic variation in cultivated S. purpurea populations are significantly less than variation found in wild populations, although the amount of diversity varies in different agricultural habitats. Cultivated populations have a greater proportion of their genetic variability distributed among populations than wild populations. The genetic structure of backyard populations resembles that of wild populations, but living fence and orchard populations have 1/3 more variability distributed among populations, most likely a reflection of relative levels of vegetative reproduction. Finally, these results suggest that S. purpurea was domesticated in two distinct regions within Mesoamerica.  相似文献   

7.
Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers.  相似文献   

8.
Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in‐field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome‐level assembly of the wheat genome now facilitates a step‐change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene‐editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail.  相似文献   

9.
Measuring day length is critical for timing annual changes in physiology and behavior in many species. Recently, rapid changes in several photoperiodically-controlled genes following exposure to a single long day have been described. Components of this 'first day release' model have so far only been tested in highly domesticated species: quail, sheep, goats and rodents. Because artificial selection accompanying domestication acts on genes related to photoperiodicity, we must also study this phenomenon in wild organisms for it to be accepted as universal. In a songbird, the great tit (Parus major), we tested whether a) these genes are involved in photoperiodic time measurement (PTM) in a wild species, and b) whether predictable species and population differences in expression patterns exist. Using quantitative RT-PCR, we compared gene expression after a single long day in male great tits from Sweden (57°42'N) with that from a German (47°43'N) population. Hypothalamic gene expression key for PTM changed only in the northern population, and occurred earlier after dawn during the single long day than demonstrated in quail; however, gonadotropins (secretion and synthesis) were stimulated in both populations, albeit with different timing. Our data are the first to show acute changes in gene expression in response to photostimulation in any wild species not selected for study of photoperiodism. The pronounced differences in gene expression in response to a single long day between two populations raise exciting new questions about potential environmental selection on photoperiodic cue sensitivity.  相似文献   

10.
11.
Populations within a species can show geographic variation in behavioral traits that affect mating decisions or limit dispersal. This may lead to restricted gene flow, resulting in a correlation between behavioral variation and genetic differentiation. Populations of a songbird that differ in a learned behavioral trait, their song dialects, may also differ genetically. If song dialects function as mating barriers, evolutionary processes such as genetic drift should lead to divergence in allele frequencies among dialect populations. The Puget Sound white‐crowned sparrow (Zonotrichia leucophrys pugetensis) is an excellent study system with a well‐defined series of song dialects along the Pacific Northwest coast. A previous study found low genetic differentiation based on four microsatellite loci; however, available loci and analyses techniques have since dramatically improved and allow us to reassess gene flow in this species. We also add extra samples to fill in gaps and add a new level of analysis of geographic variation. Based on acoustic similarities, we group six song dialects into two geographically larger “northern” and “southern” song themes. One southern dialect is acoustically more similar to dialects in the north, which makes the genetic profile of birds singing this dialect particularly interesting. Traditional F‐statistics, analysis of molecular variance as well as Bayesian techniques confirmed the earlier result that geographic variation in song does not correlate with the neutral genetic structure of the sampled dialect populations. The song themes also did not differ genetically, and the origin of the extralimital northern‐theme dialect cannot be determined. We compare this result to findings in several other species and discuss how the timing of learning and dispersal allow vocalizations to vary independently of patterns of genetic divergence.  相似文献   

12.
Climate change is expected to have profound ecological effects, yet shifts in competitive abilities among species are rarely studied in this context. Blue tits (Cyanistes caeruleus) and great tits (Parus major) compete for food and roosting sites, yet coexist across much of their range. Climate change might thus change the competitive relationships and coexistence between these two species. Analysing four of the highest-quality, long-term datasets available on these species across Europe, we extend the textbook example of coexistence between competing species to include the dynamic effects of long-term climate variation. Using threshold time-series statistical modelling, we demonstrate that long-term climate variation affects species demography through different influences on density-dependent and density-independent processes. The competitive interaction between blue tits and great tits has shifted in one of the studied sites, creating conditions that alter the relative equilibrium densities between the two species, potentially disrupting long-term coexistence. Our analyses show that long-term climate change can, but does not always, generate local differences in the equilibrium conditions of spatially structured species assemblages. We demonstrate how long-term data can be used to better understand whether (and how), for instance, climate change might change the relationships between coexisting species. However, the studied populations are rather robust against competitive exclusion.  相似文献   

13.
Populations of annual killifish of the genus Nothobranchius occur in patchily distributed temporary pools in the East African savannah. Their fragmented distribution and low dispersal ability result in highly structured genetic clustering of their populations. In this study, we examined body shape variation in a widely distributed species, Nothobranchius orthonotus with known phylogeographic structure. We tested whether genetic divergence of major mitochondrial lineages forming two candidate species is congruent with phenotypic diversification, using linear and geometric morphometry analyses of body shape in 23 wild populations. We also conducted a common‐garden experiment with two wild‐derived populations to control for the effect of local environmental conditions on body shape. We identified different allometric trajectories for different mitochondrial lineages and candidate species in both sexes. However, in a principal components analysis of population‐level body shape, the separation among mitochondrial lineages was incomplete. Higher similarity of mitochondrial lineages belonging to different candidate species than that of same candidate species prevented distinction of the two candidate species on the basis of body shape. Analysis at the individual level demonstrated that N. orthonotus express high intrapopulation variability, with major overlap among individuals from all populations. In conclusion, we suggest that N. orthonotus be considered as a single species with an extensive geographic range, strong population genetic structure and high morphological variability.  相似文献   

14.
Emerging infectious diseases threaten the survival of many species and populations by causing large declines and altering life history traits and population demographics. Therefore, it is imperative to understand how diseases impact wildlife populations so that effective management strategies can be planned. Many studies have focused on understanding the ecology of host/pathogen interactions, but it is equally important to understand the effects on host population genetic structure. In this review, we examined the literature on how infectious diseases influence host population genetic makeup, with a particular focus on whether or not they alter gene flow patterns, reduce genetic variability, and drive selection. Although the results were mixed, there was evidence for all of these outcomes. Diseases often fragmented populations into small, genetically distinct units with limited gene flow among them. In some cases, these isolated populations showed the genetic hallmarks of bottlenecks and inbreeding, but in other populations, there was sufficient gene flow or enough survivors to prevent genetic drift and inbreeding. Direct evidence of diseases acting as selective pressures in wild populations is somewhat limited, but there are several clear examples of it occurring. Also, several studies found that gene flow can impact the evolution of small populations either beneficially, by providing them with variation, or detrimentally, by swamping them with alleles that are not locally adaptive. Thus, differences in gene flow levels may explain why some species adapt while others do not. There are also intermediate cases, whereby some species may adapt to disease, but not at a rate that is meaningful for conservation purposes.  相似文献   

15.
An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution.  相似文献   

16.
Identifying the genes that underlie phenotypic variation in natural populations, and assessing the consequences of polymorphisms at these loci for individual fitness are major objectives in evolutionary biology. Yet, with the exception of a few success stories, little progress has been made, and our understanding of the link between genotype and phenotype is still in its infancy. For example, although body length in humans is largely genetically determined, with heritability estimates greater than 0.8, massive genome‐wide association studies (GWAS) have only been able to account for a very small proportion of this variation ( Gudbjartsson et al. 2008 ). If it is so difficult to explain the genetics behind relatively ‘simple’ traits, can we envision that it will at all be possible to find genes underlying complex behavioural traits in wild non‐model organisms? Some notable examples suggest that this can indeed be a worthwhile endeavour. Recently, the circadian rhythm gene Clock has been associated with timing of breeding in a wild blue tit population ( Johnsen et al. 2007 ; Liedvogel et al. 2009 ) and the Pgi gene to variation in dispersal and flight endurance in Glanville fritillary butterflies ( Niitepold et al. 2009 ). A promising candidate gene for influencing complex animal personality traits, also known as behavioural syndromes ( Sih et al. 2004 ), is the dopamine receptor D4 (DRD4) gene. Within the last decade, polymorphisms in this gene have been associated with variation in novelty seeking and exploration behaviour in a range of species, from humans to great tits ( Schinka et al. 2002 ; Fidler et al. 2007 ). In this issue, Korsten et al. (2010) attempt to replicate this previously observed association in wild‐living birds, and test for the generality of the association between DRD4 and personality across a number of European great tit populations.  相似文献   

17.
Genomic developments have empowered the investigation of heritability in wild populations directly from genomewide relatedness matrices (GRM). Such GRM‐based approaches can in particular be used to improve or substitute approaches based on social pedigree (PED‐social). However, measuring heritability from GRM in the wild has not been widely applied yet, especially using small samples and in nonmodel species. Here, we estimated heritability for four quantitative traits (tarsus length, wing length, bill length and body mass), using PED‐social, a pedigree corrected by genetic data (PED‐corrected) and a GRM from a small sample (n = 494) of blue tits from natural populations in Corsica genotyped at nearly 50,000 filtered SNPs derived from RAD‐seq. We also measured genetic correlations among traits, and we performed chromosome partitioning. Heritability estimates were slightly higher when using GRM compared to PED‐social, and PED‐corrected yielded intermediate values, suggesting a minor underestimation of heritability in PED‐social due to incorrect pedigree links, including extra‐pair paternity, and to lower information content than the GRM. Genetic correlations among traits were similar between PED‐social and GRM but credible intervals were very large in both cases, suggesting a lack of power for this small data set. Although a positive linear relationship was found between the number of genes per chromosome and the chromosome heritability for tarsus length, chromosome partitioning similarly showed a lack of power for the three other traits. We discuss the usefulness and limitations of the quantitative genetic inferences based on genomic data in small samples from wild populations.  相似文献   

18.
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0-2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.  相似文献   

19.
The degree to which genetic variation in a given trait varies among different populations of the same species and across different environments has seldom been quantified in wild vertebrate species. We investigated the expression of genetic variability and maternal effects in three larval life-history traits of the amphibian Rana temporaria. In a factorial laboratory experiment, five widely separated populations (max. 1600 km) were subjected to two different environmental treatments. Animal model analyses revealed that all traits were heritable (h(2) approximately 0.20) in all populations and under most treatment combinations. Although the cross-food treatment genetic correlations were close to unity, heritabilities under a restricted food regime tended to be lower than those under an ad libitum food regime. Likewise, maternal effects (m(2) approximately 0.05) were detected in most traits, and they tended to be most pronounced under restricted food conditions. We detected several cross-temperature genetic and maternal effects correlations that were lower than unity, suggesting that genotype-environment interactions and maternal effect-environment interactions are a significant source of phenotypic variation. The results reinforce the perspective that although the expression of genetic and maternal effects may be relatively homogeneous across different populations of the same species, local variation in environmental conditions can lead to significant variation in phenotypic expression of quantitative traits through genotype-environment and maternal effect-environment interactions.  相似文献   

20.
We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号