首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent advances in emerging food-processing technologies, such as high hydrostatic pressure or high-intensity electric field pulses, allow targeted and sophisticated modification and preservation of foods. We are beginning to understand the mechanisms involved in pressure inactivation of bacterial spores and have been collecting considerable amounts of kinetic data regarding inactivation mechanisms of enzymes and vegetative microorganisms. We are also gaining more insight into the permeabilization of plant membranes and related biosynthetic responses, making progress in food structure engineering and food modification for function, and have been initiating process developments for gentle processing of delicate biomaterials based on pressure-assisted phase transitions of water.  相似文献   

2.
Genome‐modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre‐defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome‐scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.  相似文献   

3.
4.
Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli as well as multiplex automated genome engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.  相似文献   

5.
Live attenuated Shigella vaccines have shown promise in inducing protective immune responses in human clinical trials and as carriers of heterologous antigens from other mucosal pathogens. In the past, construction of Shigella vaccine strains relied on classical allelic exchange systems to genetically engineer the bacterial genome. These systems require extensive in vitro engineering of long homologous sequences to create recombinant replication-defective plasmids or phage. Alternatively, the lambda red recombination system from bacteriophage facilitates recombination with as little as 40 bp of homologous DNA. The process, referred to as recombineering, typically uses an inducible lambda red operon on a temperature-sensitive plasmid and optimal transformation conditions to integrate linear antibiotic resistance cassettes flanked by homologous sequences into a bacterial genome. Recent advances in recombineering have enabled modification of genomic DNA from bacterial pathogens including Salmonella, Yersinia, enteropathogenic Escherichia coli, or enterohemorrhagic E. coli and Shigella. These advances in recombineering have been used to systematically delete virulence-associated genes from Shigella, creating a number of isogenic strains from multiple Shigella serotypes. These strains have been characterized for attenuation using both in vivo and in vitro assays. Based on this data, prototypic Shigella vaccine strains containing multiple deletions in virulence-associated genes have been generated.  相似文献   

6.
Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the λ Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.  相似文献   

7.
土壤与水体有机污染的生物修复及其应用研究进展   总被引:45,自引:1,他引:45  
系统论述了土壤、水有机污染物的主要来源、特点、有机污染生物修复的概念、应用范围、成功实例与研究进展等,特别是对于泄漏石油污染的生物成功降解方法、效果,土壤中易爆炸物如TNT、废水中有机污染的有效降解等,评价了生物修复所具有突出优势,对有机、无机污染物降解过程中植物、微生物筛选、基因修饰、分子克隆与转基因植物方面近年来所取得的惊人成果与突破性进展,无疑正激励着人们开拓更大的应用范围。预计不久的将来,更多具有环境净化与生物修复功能的商业性综合技术与高效性工程生物将投入应用。  相似文献   

8.
Microbial production of biopolymers derived from renewable substrates and waste streams reduces our heavy reliance on petrochemical plastics. One of the most important biodegradable polymers is the family of polyhydroxyalkanoates (PHAs), naturally occurring intracellular polyoxoesters produced for decades by bacterial fermentation of sugars and fatty acids at the industrial scale. Despite the advances, PHA production still suffers from heavy costs associated with carbon substrates and downstream processing to recover the intracellular product, thus restricting market positioning. In recent years, model-aided metabolic engineering and novel synthetic biology approaches have spurred our understanding of carbon flux partitioning through competing pathways and cellular resource allocation during PHA synthesis, enabling the rational design of superior biopolymer producers and programmable cellular lytic systems. This review describes these attempts to rationally engineering the cellular operation of several microbes to elevate PHA production on specific substrates and waste products. We also delve into genome reduction, morphology, and redox cofactor engineering to boost PHA biosynthesis. Besides, we critically evaluate engineered bacterial strains in various fermentation modes in terms of PHA productivity and the period required for product recovery.  相似文献   

9.
10.
11.
12.
Engineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max. The simplicity and efficacy of CoDA will enable broad adoption of ZFN technology and make possible large-scale projects focused on multigene pathways or genome-wide alterations.  相似文献   

13.
Protein phosphorylation events are key regulators of cellular signaling processes. In the era of functional genomics, rational drug design programs demand large-scale high-throughput analysis of signal transduction cascades. Significant improvements in the area of mass spectrometry-based proteomics have provided exciting opportunities for rapid progress toward global protein phosphorylation analysis. This review summarizes several recent advances made in the field of phosphoproteomics with an emphasis placed on mass spectrometry instrumentation, enrichment methods and quantification strategies. In the near future, these technologies will provide a tool that can be used for quantitative investigation of signal transduction pathways to generate new insights into biologic systems.  相似文献   

14.
Protein phosphorylation events are key regulators of cellular signaling processes. In the era of functional genomics, rational drug design programs demand large-scale high-throughput analysis of signal transduction cascades. Significant improvements in the area of mass spectrometry-based proteomics have provided exciting opportunities for rapid progress toward global protein phosphorylation analysis. This review summarizes several recent advances made in the field of phosphoproteomics with an emphasis placed on mass spectrometry instrumentation, enrichment methods and quantification strategies. In the near future, these technologies will provide a tool that can be used for quantitative investigation of signal transduction pathways to generate new insights into biologic systems.  相似文献   

15.
16.
Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.  相似文献   

17.
The analysis and modification of surfaces in their native conditions can be performed using new mass spectrometric methods. Ambient ionization sources, including desorption electrospray ionization (DESI), have been implemented for the rapid analysis of unmodified biological surfaces including whole plant material, tissue sections, algae, and bacterial colonies. Recent advances have shown promise for in vivo and high-throughput clinical analysis. Additionally, the recent development of ambient ion soft landing (SL) allows polyatomic ions to be deposited onto surfaces in open air. Ambient SL offers speed, control, and flexibility for surface reactions and modification.  相似文献   

18.
The past few decades have seen the field of genetic engineering evolve at a rapid pace, with neuroscientists now equipped with a wide range of tools for the manipulation of an animal's genome in order to study brain function. However, the number of species to which these technologies have been applied, namely the fruit fly, C. elegans, zebrafish and mouse, remains relatively few. This review will discuss the variety of approaches to genetic modification that have been developed in such traditional 'genetic systems', and highlight the progress that has been made to translate these technologies to alternative species such as rats, monkeys and birds, where certain neurobiological questions may be better studied.  相似文献   

19.
20.
芳香族化合物种类丰富,在多个行业具有广泛的用途,需求量大。通过构建微生物细胞工厂合成芳香族化合物具有独特的优势和工业化应用前景,其中酵母底盘因其清晰的遗传背景、完善的基因操作工具以及成熟的工业发酵体系等优势,常被用于构建细胞工厂。目前改造酵母底盘生产芳香族化合物的研究取得了一系列进展,并针对关键问题提出了一些可行的解决策略。针对酵母合成芳香族化合物的策略与挑战,从芳香族化合物合成路径改造、多样化碳源利用及转运系统改造、基因组多靶点改造、特殊酵母底盘及混菌系统构建、合成生物学高通量技术的应用这五个方面进行系统地梳理和阐述,为生产芳香族化合物的酵母底盘构建与改造提供思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号