首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The detachment of human immunodeficiency type 1 (HIV-1) virions depends on CHPM4 family members, which are late-acting components of the ESCRT pathway that mediate the cleavage of bud necks from the cytosolic side. We now show that in human cells, CHMP4 proteins are to a considerable extent bound to two high-molecular-weight proteins that we have identified as CC2D1A and CC2D1B. Both proteins bind to the core domain of CHMP4B, which has a strong propensity to polymerize and to inhibit HIV-1 budding. Further mapping showed that CC2D1A binds to an N-terminal hairpin within the CHMP4 core that has been implicated in polymerization. Consistent with a model in which CC2D1A and CC2D1B regulate CHMP4 polymerization, the overexpression of CC2D1A inhibited both the release of wild-type HIV-1 and the CHMP4-dependent rescue of an HIV-1 L domain mutant by exogenous ALIX. Furthermore, small interfering RNA against CC2D1A or CC2D1B increased HIV-1 budding under certain conditions. CC2D1A and CC2D1B possess four Drosophila melanogaster 14 (DM14) domains, and we demonstrate that these constitute novel CHMP4 binding modules. The DM14 domain that bound most avidly to CHMP4B was by itself sufficient to inhibit the function of ALIX in HIV-1 budding, indicating that the inhibition occurred through CHMP4 sequestration. However, N-terminal fragments of CC2D1A that did not interact with CHMP4B nevertheless retained a significant level of inhibitory activity. Thus, CC2D1A may also affect HIV-1 budding in a CHMP4-independent manner.  相似文献   

2.
3.
Endosomal sorting complexes required for transport (ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III) are selectively recruited to cellular membranes to exert their function in diverse processes, such as multivesicular body biogenesis, enveloped virus budding, and cytokinesis. ESCRT-III is composed of members of the charged multivesicular body protein (CHMP) family—cytosolic proteins that are targeted to membranes via yet unknown signals. Membrane targeting is thought to result in a membrane-associated protein network that presumably acts at a late budding step. Here we provide structural evidence based on small-angle X-ray scattering data that ESCRT-III CHMP3 can adopt two conformations in solution: a closed globular form that most likely represents the cytosolic conformation and an open extended conformation that might represent the activated form of CHMP3. Both the closed and open conformations of CHMP3 interact with AMSH with high affinity. Although the C-terminal region of CHMP3 is required for AMSH interaction, a peptide thereof reveals only weak binding to AMSH, suggesting that other regions of CHMP3 contribute to the high-affinity interaction. Thus, AMSH, including its MIT (microtubule interacting and transport) domain, interacts with ESCRT-III CHMP3 differently from reported Vps4 MIT domain-CHMP protein interactions.  相似文献   

4.
We developed and implemented an ensemble-refinement method to study dynamic biomolecular assemblies with intrinsically disordered segments. Data from small angle X-ray scattering (SAXS) experiments and from coarse-grained molecular simulations were combined by using a maximum-entropy approach. The method was applied to CHMP3 of ESCRT-III, a protein with multiple helical domains separated by flexible linkers. Based on recent SAXS data by Lata et?al. (J. Mol. Biol. 378, 818, 2008), we constructed ensembles of CHMP3 at low-?and high-salt concentration to characterize its closed autoinhibited state and open active state. At low salt, helix α(5) is bound to the tip of helices α(1) and α(2), in excellent agreement with a recent crystal structure. Helix α(6) remains free in solution and does not appear to be part of the autoinhibitory complex. The simulation-based ensemble refinement is general and effectively increases the resolution of SAXS beyond shape information to atomically detailed structures.  相似文献   

5.
Endosomal sorting complexes required for transport (ESCRT) recognize ubiquitinated cargo and catalyze diverse budding processes including multivesicular body biogenesis, enveloped virus egress, and cytokinesis. We present the crystal structure of an N-terminal fragment of the deubiquitinating enzyme AMSH (AMSHΔC) in complex with the C-terminal region of ESCRT-III CHMP3 (CHMP3ΔN). AMSHΔC folds into an elongated 90?? long helical assembly that includes an unusual MIT domain. CHMP3ΔN is unstructured in solution and helical in complex with AMSHΔC, revealing a novel MIT domain interacting motif (MIM) that does not overlap with the CHMP1-AMSH binding site. ITC and SPR measurements demonstrate an unusual high-affinity MIM-MIT interaction. Structural analysis suggests a regulatory role for the N-terminal helical segment of AMSHΔC and its destabilization leads to a loss of function during HIV-1 budding. Our results indicate a tight coupling of ESCRT-III CHMP3 and AMSH functions and provide insight into the regulation of ESCRT-III.  相似文献   

6.
7.
The CC2D1A and CC2D2A genes are involved in Ca(2+)-regulated signaling pathways and have recently been implicated in the etiology of mental retardation (MR). The aim of this study was to investigate whether CC2D1A and CC2D2A polymorphisms are associated with susceptibility to MR in a Han Chinese population using a family based association approach. The sample included 172 trios (parents and offspring), and all subjects were genotyped for several single-nucleotide polymorphisms covering CC2D1A and CC2D2A. Linkage disequilibrium (LD) analysis revealed that the rs6511901 and rs10410239 polymorphisms of CC2D1A were in strong LD (D'=0.865), and haplotype analysis showed evidence for over-transmission from parents to MR offspring (p=0.0009). The LD analysis also revealed that CC2D2A single-nucleotide polymorphisms rs10025837, rs13116304, and rs7661102 were in strong LD (D'=0.848), and haplotype analysis showed significant transmission disequilibrium (p=0.0004). The results suggest the involvement of CC2D1A and CC2D2A in MR in the Han Chinese population, and some specific haplotypes may be susceptible or protective.  相似文献   

8.
Hepatitis B virus (HBV) is an enveloped DNA virus that presumably buds at intracellular membranes of infected cells. HBV budding involves two endocytic host proteins, the ubiquitin-interacting adaptor gamma 2-adaptin and the Nedd4 ubiquitin ligase. Here, we demonstrate that HBV release also requires the cellular machinery that generates internal vesicles of multivesicular bodies (MVBs). In order to perturb the MVB machinery in HBV-replicating liver cells, we used ectopic expression of dominant-negative mutants of different MVB components, like the ESCRT-III complex-forming CHMP proteins and the Vps4 ATPases. Upon coexpression of mutated CHMP3, CHMP4B, or CHMP4C forms, as well as of ATPase-defective Vps4A or Vps4B mutants, HBV assembly and egress were potently blocked. Each of the MVB inhibitors arrested virus particle maturation by entrapping the viral core and large and small envelope proteins in detergent-insoluble membrane structures that closely resembled aberrant endosomal class E compartments. In contrast, HBV subvirus particle release was not affected by MVB inhibitors, hinting at different export routes used by viral and subviral particles. To further define the role gamma 2-adaptin plays in HBV formation, we examined the effects of its overexpression in virus-replicating cells. Intriguingly, excess gamma 2-adaptin blocked HBV production in a manner similar to the actions of CHMP and Vps4 mutants. Moreover, overexpressed gamma 2-adaptin perturbed the endosomal morphology and diminished the budding of a retroviral Gag protein, implying that it may act as a principal inhibitor of the MVB sorting pathway. Together, these results demonstrate that HBV exploits the MVB machinery with the aid of gamma 2-adaptin.  相似文献   

9.
The endosomal sorting complexes required for transport (ESCRT-0-III) allow membrane budding and fission away from the cytosol. This machinery is used during multivesicular endosome biogenesis, cytokinesis, and budding of some enveloped viruses. Membrane fission is catalyzed by ESCRT-III complexes made of polymers of charged multivesicular body proteins (CHMPs) and by the AAA-type ATPase VPS4. How and which of the ESCRT-III subunits sustain membrane fission from the cytoplasmic surface remain uncertain. In vitro, CHMP2 and CHMP3 recombinant proteins polymerize into tubular helical structures, which were hypothesized to drive vesicle fission. However, this model awaits the demonstration that such structures exist and can deform membranes in cellulo. Here, we show that depletion of VPS4 induces specific accumulation of endogenous CHMP2B at the plasma membrane. Unlike other CHMPs, overexpressed full-length CHMP2B polymerizes into long, rigid tubes that protrude out of the cell. CHMP4s relocalize at the base of the tubes, the formation of which depends on VPS4. Cryo-EM of the CHMP2B membrane tubes demonstrates that CHMP2B polymerizes into a tightly packed helical lattice, in close association with the inner leaflet of the membrane tube. This association is tight enough to deform the lipid bilayer in cases where the tubular CHMP2B helix varies in diameter or is closed by domes. Thus, our observation that CHMP2B polymerization scaffolds membranes in vivo represents a first step toward demonstrating its structural role during outward membrane deformation.  相似文献   

10.
11.
12.
13.
The A1 chain of the cholera toxin (CT) undergoes retrotranslocation to the cytosol across the endoplasmic reticulum (ER) membrane by hijacking ER-associated degradation (ERAD). In the cytosol the CT A1 chain stimulates adenylyl cyclase. The VCP(Ufd1-Npl4) complex mediates retrotranslocation of emerging ER proteins. While one group reported that VCP is required for CT retrotranslocation, another group concluded the opposite. We show that VCP is dispensable for CT retrotranslocation, however RNAi of either Ufd1 or Npl4 induces an increase in adenylyl cyclase activity induced by CT. RNAi of VCP, Ufd1 or Npl4 did not affect adenylyl cyclase activity induced by forskolin. These findings are coherent with our previous report showing that depletion of Ufd1-Npl4 accelerates ERAD of reporter substrates. To integrate contradictory results we propose a new model, where Ufd1-Npl4 is a negative regulator of retrotranslocation, delaying the retrotranslocation of ERAD substrates independently of its association with VCP.  相似文献   

14.
15.
16.
CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT-III mediated process in metazoans.  相似文献   

17.
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic specific mammalian Ste20-like protein kinase and has been implicated in many cellular signaling pathways including T cell receptor (TCR) signaling. However, little is known about the in vivo regulation of HPK1. We present evidence that HPK1 is positively regulated by protein phosphatase 4 (PP4; also called PPX and PPP4), a serine/threonine phosphatase. We found that PP4 interacted with HPK1 and that the proline-rich region of HPK1 was necessary and sufficient for this interaction. We also found that PP4 had phosphatase activity toward HPK1 in vivo and that co-transfection of PP4 with HPK1 resulted in specific kinase activation of HPK1. Moreover, we found that the PP4-induced HPK1 kinase activation was accompanied by an increase in protein expression of HPK1. Pulse-chase analysis showed that PP4 increased the half-life of HPK1. Further studies showed that HPK1 was subject to regulation by ubiquitination and ubiquitin-targeted degradation and that PP4 inhibited HPK1 ubiquitination. In addition, we found that TCR stimulation enhanced the PP4-HPK1 interaction and that wild-type PP4 enhanced, whereas a phosphatase-dead PP4 mutant inhibited, TCR-induced activation of HPK1 in Jurkat T cells. Combined with the observation that PP4 enhanced HPK1-induced JNK activation, our studies identify PP4 as a positive regulator for HPK1 and the HPK1-JNK signaling pathway.  相似文献   

18.
CD4+ Th1 cells produce IFN-gamma, TNF-alpha, and IL-2. These Th1 cytokines play critical roles in both protective immunity and inflammatory responses. In this study we report that sphingosine kinase 1 (SPHK1), but not SPHK2, is highly expressed in DO11.10 Th1 cells. The expression of SPHK1 in Th1 cells requires TCR signaling and new protein synthesis. SPHK1 phosphorylates sphingosine to form sphingosine-1-phosphate. Sphingosine-1-phosphate plays important roles in inhibition of apoptosis, promotion of cell proliferation, cell migration, calcium mobilization, and activation of ERK1/2. When SPHK1 expression was knocked down by SPHK1 short interfering RNA, the production of IL-2, TNF-alpha, and IFN-gamma by Th1 cells in response to TCR stimulation was enhanced. Consistently, overexpression of dominant-negative SPHK1 increased the production of IL-2, TNF-alpha, and IFN-gamma in Th1 cells. Furthermore, overexpression of SPHK1 in Th1 and Th0 cells decreased the expression of IL-2, TNF-alpha, and IFN-gamma. Several chemokines, including Th2 chemokines CCL17 and CCL22, were up-regulated by SPHK1 short interfering RNA and down-regulated by overexpression of SPHK1. We also showed that Th2 cells themselves express CCL17 and CCL22. Finally, we conclude that SPHK1 negatively regulates the inflammatory responses of Th1 cells by inhibiting the production of proinflammatory cytokines and chemokines.  相似文献   

19.
Wang Y  Zhang Y  Yang X  Han W  Liu Y  Xu Q  Zhao R  Di C  Song Q  Ma D 《Life sciences》2006,78(6):614-621
Chemokine-like factor 1 (CKLF1) exhibits chemotactic effects on leukocytes. Its amino acid sequence shares similarity with those of TARC/CCL17 and MDC/CCL22, the cognate ligands for CCR4. The chemotactic effects of CKLF1 for CCR4-transfected cells could be desensitized by TARC/CCL17 and markedly inhibited by PTX. CKLF1 induced a calcium flux in CCR4-transfected cells and fully desensitized a subsequent response to TARC/CCL17, and TARC/CCL17 could partly desensitize the response to CKLF1. CKLF1 caused significant receptor internalization in pCCR4-EGFP transfected cells. Taken together, CKLF1 is a novel functional ligand for CCR4.  相似文献   

20.
The ESCRT protein CHMP2B and the RNA-binding protein TDP-43 are both associated with ALS and FTD. The pathogenicity of CHMP2B has mainly been considered a consequence of autophagy–endolysosomal dysfunction, whereas protein inclusions containing phosphorylated TDP-43 are a pathological hallmark of ALS and FTD. Intriguingly, TDP-43 pathology has not been associated with the FTD-causing CHMP2BIntron5 mutation. In this study, we identify CHMP2B as a modifier of TDP-43–mediated neurodegeneration in a Drosophila screen. Down-regulation of CHMP2B reduces TDP-43 phosphorylation and toxicity in flies and mammalian cells. Surprisingly, although CHMP2BIntron5 causes dramatic autophagy dysfunction, disturbance of autophagy does not alter TDP-43 phosphorylation levels. Instead, we find that inhibition of CK1, but not TTBK1/2 (all of which are kinases phosphorylating TDP-43), abolishes the modifying effect of CHMP2B on TDP-43 phosphorylation. Finally, we uncover that CHMP2B modulates CK1 protein levels by negatively regulating ubiquitination and the proteasome-mediated turnover of CK1. Together, our findings propose an autophagy-independent role and mechanism of CHMP2B in regulating CK1 abundance and TDP-43 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号