首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The effect of Streptomyces albovinaceus (S-22) and Bacillus sp. (B1) on the growth response, nodulation, nutrition and nitrogenase activities of faba bean (Vicia faba) varieties infected with Glomus mosseae under pot conditions in sterile soil amended with chitin was studied. The growth, nodulation, nutrients content and nitrogenase activity of mycorrhiza-treated plants of Giza-667 were significantly increased compared to untreated ones. Such increases were related to the increase in mycorrhizal root infection. Amendment of soil with chitin alone reduced the growth, nodulation, total nitrogen contents and nitrogenase activities of mycorrhiza-treated faba bean plants (Giza-667) compared to untreated plants. Inoculation of plants with S. albovinaceus or Bacillus sp. significantly increased the level of mycorrhizal roots infection, but addition of chitin to the soil in combination with Bacillus sp. reduced the mycorrhizal infection of faba bean roots. Highest phosphorus contents of faba bean Giza-667 were recorded after G. mosseae inoculation in the presence of all treatments. Similar results were observed for the other varieties. The microbial populations were significantly increased in rhizospheres amended with chitin. Such increases were not in response to the mycorrhizal inoculation. Generally, the microflora of faba bean rhizospheres was increased after treatment with G. mosseae in the absence of chitin amendment alone compared with non-mycorrhizal rhizospheres.  相似文献   

2.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

3.
Two pot experiments were conducted to examine three-level interactions between host plants, mycorrhizal fungi and parasitic plants. In a greenhouse experiment, Poa annua plants were grown in the presence or absence of an AM fungus (either Glomus lamellosum V43a or G. mosseae BEG29) and in the presence or absence of a root hemiparasitic plant (Odontites vulgaris). In a laboratory experiment, mycorrhizal infection (Glomus claroideum BEG31) of Trifolium pratense host plants (mycorrhizal versus non-mycorrhizal) was combined with hemiparasite infection (Rhinanthus serotinus) of the host (parasitized versus non-parasitized). Infection with the two species of Glomus had no significant effect on the growth of P. annua, while hemiparasite infection caused a significant reduction in host biomass. Mycorrhizal status of P. annua hosts (i.e. presence/absence of AM fungus) affected neither the biomass nor the number of flowers produced by the attached O. vulgaris plants. Infection with G. claroideum BEG31 greatly increased the biomass of T. pratense, but hemiparasite infection had no effect. The hemiparasitic R. serotinus plants attached to mycorrhizal hosts had higher biomass and produced more flowers than plants growing with non-mycorrhizal hosts. Roots of T. pratense were colonized by the AM fungus to an extent independent of the presence or absence of the hemiparasite. Our results confirm earlier findings that the mycorrhizal status of a host plant can affect the performance of an attached root hemiparasite. However, improvement of the performance of the parasitic plant following attachment to a mycorrhizal host depends on the extent to which the AM fungi is able to enhance the growth of the host. Accepted: 23 February 2001  相似文献   

4.
Summary Inoculation of lettuce, onion and clover with VA mycorrhizal fungus (Glomus mosseae) increased plant yields and phosphate uptake in three soils that had been depleted in phosphate. From two soils in which the labile pool of phosphate had been labelled with32P, the specific activity of plant phosphate was the same whether the plants were mycorrhizal or non-mycorrhizal. In a third soil (Sonning) the specific activity was lower in lettuce and clover when the plants were mycorrhizal. When the experiment was repeated with the same soil under conditions that gave lower growth rates, the specific activity was the same in mycorrhizal and non-mycorrhizal plants. The lower specific activity in lettuce and clover in the first experiment is atributed to greater release of slowly exchanging phosphate (which is not in equilibrium with the added32P), caused by the high uptake of phosphate by the mycorrhizal plants. When they occur, lower specific activities in mycorrhizal plants may therefore not necessarily indicate a solubilizing effect of the mycorrhiza on soil phosphate.  相似文献   

5.
A pot experiment was conducted to examine the effects of three different arbuscular mycorrhizal fungi, Glomus mosseae, G. deserticola and Gigaspora gergaria, on growth and nutrition of wheat (Triticum aestivium L. cv. Henta) plants grown in saline soil. Under saline condition, mycorrhizal inoculation significantly increased growth responses, nutrient contents, acid and alkaline phosphatases, proline and total soluble protein of wheat plants compared to non-mycorrhizal ones. Those stimulations were related to the metabolic activity of the each mycorrhizal fungus. The localization of succinate dehydrogenase “SDH” (as a vital stain for the metabolically active fungus) in the arbuscular mycorrhizal fungi was variable. In general, mycorrhizal shoot plant tissues had significantly higher concentrations of P, N, K and Mg but lower Na concentration than those of non-mycorrhizal plants. In saline soil, growth and nutrition of wheat plants showed a high degree of dependency on mycorrhizal fungi (especially G. mosseae). The use of the nitroblue tetrazolium chloride method as a vital stain for SDH activity showed that all the structures of mycorrhizal infections in the wheat plant estimated by the trypan blue staining (non-vital stain) were not metabolically active. Interestingly, the reduction in Na uptake along with associated increases in P, N and Mg absorption and high proline, phosphatase activities and chlorophyll content in the mycorrhizal plants could be important for salt alleviation in plants growing in saline soils.  相似文献   

6.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   

7.
Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani   总被引:1,自引:0,他引:1  
Mycorrhiza frequently leads to the control of root pathogens, but appears to have the opposite effect on leaf pathogens. In this study, we studied mycorrhizal effects on the development of early blight in tomato (Solanum lycopersicum) caused by the necrotrophic fungus Alternaria solani. Alternaria-induced necrosis and chlorosis of all leaves were studied in mycorrhizal and non-mycorrhizal plants over time course and at different soil P levels. Mycorrhizal tomato plants had significantly less A. solani symptoms than non-mycorrhizal plants, but neither plant growth nor phosphate uptake was enhanced by mycorrhizas. An increased P supply had no effect on disease severity in non-mycorrhizal plants, but led to a higher disease severity in mycorrhizal plants. This was parallel to a P-supply-induced reduction in mycorrhiza formation. The protective effect of mycorrhizas towards development of A. solani has some parallels to induced systemic resistance, mediated by rhizobacteria: both biocontrol agents are root-associated organisms and both are effective against necrotrophic pathogens. The possible mechanisms involved are discussed.  相似文献   

8.
Glomus mosseae and the two pod rot pathogens Fusarium solani and Rhizoctonia solani and subsequent effects on growth and yield of peanut (Arachis hypogaea L.) plants were investigated in a greenhouse over a 5-month period. At plant maturity, inoculation with F. solani and/or R. solani significantly reduced shoot and root dry weights, pegs and pod number and seed weight of peanut plants. In contrast, the growth response and biomass of peanut plants inoculated with G. mosseae was significantly higher than that of non-mycorrhizal plants, both in the presence and absence of the pathogens. Plants inoculated with G. mosseae had a lower incidence of root rot, decayed pods, and death than non-mycorrhizal ones. The pathogens either alone or in combination reduced root colonization by the mycorrhizal fungus. Propagule numbers of each pathogen isolated from pod shell, seed, carpophore, lower stem and root were significantly lower in mycorrhizal plants than in the non-mycorrhizal plants. Thus, G. mosseae protected peanut plants from infection by pod rot fungal pathogens. Accepted: 10 February 2000  相似文献   

9.
The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.  相似文献   

10.
Liu Y  Zhu YG  Chen BD  Christie P  Li XL 《Mycorrhiza》2005,15(3):187-192
We report for the first time some effects of colonization by an arbuscular mycorrhizal (AM) fungus (Glomus mosseae) on the biomass and arsenate uptake of an As hyperaccumulator, Pteris vittata. Two arsenic levels (0 and 300 mg As kg–1) were applied to an already contaminated soil in pots with two compartments for plant and hyphal growth in a glasshouse experiment. Arsenic application had little or no effect on mycorrhizal colonization, which was about 50% of root length. Mycorrhizal colonization increased frond dry matter yield, lowered the root/frond weight ratio, and decreased frond As concentration by 33–38%. Nevertheless, transfer of As to fronds showed a 43% increase with mycorrhizal colonization at the higher soil As level. Frond As concentrations reached about 1.6 g kg–1 (dry matter basis) in non-mycorrhizal plants in the As-amended soil. Mycorrhizal colonization elevated root P concentration at both soil As levels and mycorrhizal plants had higher P/As ratios in both fronds and roots than did non-mycorrhizal controls.  相似文献   

11.
Mycorrhizal fungus colonization of roots may modify plant metal acquisition and tolerance. In the present study, the contribution of the extraradical mycelium of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae (BEG 107), to the uptake of metal cations (Cu, Zn, Cd and Ni) by cucumber (Cucumis sativus) plants was determined. The influence of the amount of P supplied to the hyphae on the acquisition and partitioning of metal cations in the mycorrhizal plants was also investigated. Pots with three compartments were used to separate root and root-free hyphal growing zones. The shoot concentration of Cd and Ni was decreased in mycorrhizal plants compared to non-mycorrhizal plants. In contrast, shoot Zn and Cu concentrations were increased in mycorrhizal plants. High P supply to hyphae resulted in decreased root Cu concentrations and shoot Cd and Ni concentrations in mycorrhizal plants. These results confirm that some elements required for plant growth (P, Zn, Cu) are taken up by mycorrhizal hyphae and are then transported to the plants. Conversely, Cd and Ni were transported in much smaller amounts by hyphae to the plant, so that arbuscular mycorrhizal fungus colonization could partly protect plants from toxic effects of these elements. Selective uptake and transport of plant essential elements over non-essential elements by AM hyphae, increased growth of mycorrhizal plants, and metal accumulation in the root may all contribute to the successful growth of mycorrhizal plants on metal-rich substrates. These effects are stimulated when hyphae can access sufficient P in soil.  相似文献   

12.
The interactive effects of vesicular-arbuscular mycorrhizal (VAM) fungi and root-knot nematode (Meloidogyne hapla) were studied on nematode-susceptible cultivars of tomato (cv. Scoresby) and white clover (cv. Huia) at four levels of applied phosphate. The relative merits of simultaneous inoculation with mycorrhizal fungi and nematodes and of inoculation with mycorrhizal fungi prior to nematode inoculation were evaluated. Mycorrhizal plants were more resistant than non-mycorrhizal plants to root-knot nematode at all phosphate levels and growth benefits were generally greater in plants preinfected with mycorrhizal fungi. Nematode numbers increased with increasing levels of applied phosphate. In mycorrhizal root systems, nematode numbers increased in the lower phosphate soils; at higher phosphate levels nematode numbers were either unaffected or reduced. The numbers of juveniles and adults per gram of root were always lower in mycorrhizal treatments. Mycorrhizal root length remained unaffected by nematode inoculation. Mycorrhizal inoculation thus increased the plants' resistance to infection by M. hapla. This was probably due to some alteration in the physiology of the root system but was not entirely a result of better host nutrition and improved phosphorus uptake by mycorrhizal plants.  相似文献   

13.
The paper reports the establishment of mycorrhizal infection of a non-mycorrhizal Ri-T-DNA transformed carrot root when co-cultured with a surface sterilized sweet potato root segment colonized by arbuscular mycorrhizal (AM) fungus G. intraradices on minimal M medium. Extensive fungal hyphal emergence from each cut end of the mycorrhizal sweet potato root piece was observed in one week old cultures. These hyphae caused infection on contacting the transformed-carrot- root segment and produced many hyphae and spores both inside and outside the zone of the root after 6 week of growth. Axenically produced fungal propagules proliferated on the surface of fresh minimal M medium when sub-cultured without any root segment. On repeated sub-culturing, these propagules did not lose their ability to grow and produced many juvenile small spore-like vesicles during the non-symbiotic phase. Although these spores were morphologically and anatomically similar to their soil borne counter parts, they were much smaller. When placed in the vicinity of a fresh hairy root on the minimal medium or a Sudan grass seedling in sand culture, the axenically produced AM fungal propagules caused root infection, but the infection characteristics were significantly different to the original culture in terms of shape (spherical vs oval) and size (20 microm vs 45 microm) of the intraradical vesicles, and absence of 'H' branches. Sudan grass seedlings inoculated with the axenically cultured fungus showed significantly (P < 0.05) higher dry weights plant'. When compared to the plants inoculated with sand cultures, the growth parameters and the percentage infection were not significantly different. However, when both sources of inocula were used together, a synergistic effect on plant growth as well as root infection was observed.  相似文献   

14.
The effect of root exudates from mycorrhizal and non-mycorrhizal tomato plants on microconidia germination of the tomato pathogen Fusarium oxysporum f. sp. lycopersici was tested. Microconidia germination was enhanced in the presence of root exudates from mycorrhizal tomato plants. The more tomato plants were colonized by the arbuscular mycorrhizal fungus Glomus mosseae, the more microconidia germination was increased, indicating that alterations of the exudation pattern depended on the degree of root AM colonization. Moreover, alterations of the exudation pattern of mycorrhizal plants are not only local, but also systemic. Testing the exudates from plants with a high and a low P level revealed that the alterations of the root exudates from mycorrhizal plants, resulting in a changed effect on microconidia germination, are not due to an improved P status of mycorrhizal plants.  相似文献   

15.
Comparisons between plant species or cultivars differing in root hair length have indicated a major impact of root hairs on the mycorrhizal dependency of plants with respect to phosphate (P) uptake. The current study aimed to investigate this relationship by comparing directly the mycorrhizal dependency of a spontaneous root hairless mutant, brb , in Hordeum vulgare cv Pallas and its wild type. Both brb and wild type were grown at different soil P levels in association with different mycorrhizal fungi. P uptake of brb and wild type was similar at high P levels, but P uptake by non-mycorrhizal brb plants at low P levels was substantially lower than that of the non-mycorrhizal wild-type plants. However, P uptake of the mutant was much increased by mycorrhizas and with one fungus, the additional P uptake was effectively translated into increased plant growth. Roots of the mutant contained typical colonization structures and a radioactive tracer confirmed P transport by the extraradical mycelium. This is the first direct evaluation of the relative effectiveness of root hairs and mycorrhizas. Mycorrhizas effectively substituted root hairs in P uptake, whereas the additional P was most often used less effectively in promoting plant growth than P provided by root hairs.  相似文献   

16.
 A field experiment was conducted to determine the seasonal patterns of arbuscular mycorrhiza (AM) in a dryland winter wheat (Triticum aestivum L.) system and to determine wheat growth and P uptake responses to inoculation with mycorrhizal fungus. Broadcast-incorporated treatments included (1) no inoculation with mycorrhizal fungus, with and without P fertilizer, and (2) mycorrhizal fungal inoculation at a rate of 5000 spores of Glomus intraradices (Schenck and Smith), per 30 cm in each row, with and without fertilizer P. Winter wheat was seeded within a day after treatments were imposed, and roots were sampled at five growth stages to quantify AM. Shoot samples were also taken for determination of dry matter, grain yield and yield components, and N and P uptake. No AM infection was evident during the fall months following seeding, which was characterized by low soil temperature, while during the spring, the AM increased gradually. Increases in wheat grain yields by enhanced AM were of similar magnitude to the response obtained from P fertilization. However, responses differed at intermediate growth stages. At the tillering stage, P uptake was mainly increased by P fertilization but not by fungal inoculation. At harvest, enhanced AM increased P uptake regardless of whether or not fertilizer P was added. The AM symbiosis increased with rising soil temperatures in the spring, in time to enhance late-season P accumulation and grain production. Accepted: 15 July 1998  相似文献   

17.
C. E. Nelsen  G. R. Safir 《Planta》1982,154(5):407-413
Onion plants (Allium cepa L, cv. Downing Yellow Globe) grown in pots and infected by the mycorrhizal fungusGlomus etunicatus Becker and Gerdemann were more drought tolerant than were non-mycorrhizal individials when exposed to several periods of soil water stress separated by periods of high water supply, as shown by greater fresh and dry weights and higher tissue phosphorus levels in the mycorrhizal plants. The tissues of stressed, non-mycorrhizal plants were deficient in P, despite the fact that only non-mycorrhizal plants were fertilized with high levels of P (26 mg P per 440 g soil). Differences in plant water relations (leaf water potentials or transpiration rates) and changes in soil P levels which may have affected plant growth were investigated, and discounted as factors important for the results. The P nutrition of plants has been implicated in the ability of plants to tolerate drought and it was concluded that the ability of the mycorrhizal fungus to maintain adequate P nutrition in the onions during soil water stress was a major factor in the improved drought tolerance. Infection of the root by the fungus was found not to be affected by water stress or P fertilization but fungal reproduction, as determined by spore numbers in the soil, was decreased by water stress and by P fertilization.Michigan Agricultural Experiment Station Article No. 10050  相似文献   

18.
Summary The objective of this study was to determine whether infection of Avena fatua L. plants by the mycorrhizal fungus Glomus intraradices Schenck & Smith could influence the vigor of the offspring generation. Two experiments demonstrated that mycorrhizal infection of the maternal generation had slight but persistent positive effects on offspring leaf expansion in the early stages of growth. In two other experiments, mycorrhizal infection of mother plants had several long lasting effects on their offspring. Offspring produced by mycorrhizal mother plants had greater leaf areas, shoot and root nutrient contents and root:shoot ratios compared to those produced by non-mycorrhizal mother plants. Moreover, mycorrhizal infection of mother plants significantly reduced the weight of individual seeds produced by offspring plants while it increased the P concentrations of the seeds and the number of seeds per spikelet produced by offspring plants. The effects of mycorrhizal infections of maternal plants on the vigor and performance of offspring plants were associated with higher seed phosphorus contents but generally lighter seeds. The results suggest that mycorrhizal infection may influence plant fitness by increasing offspring vigor and offspring reproductive success in addition to previously reported increases in maternal fecundity.  相似文献   

19.
L. Symeonidis 《Biometals》1990,3(3-4):204-207
Summary Plant yield of mycorrhizal and non-mycorrhizalFestuca rubra L. was linearly decreased with increasing zinc concentrations in nutrient solution. In all cases, non-mycorrhizal plant growth was significantly greater than that of mycorrhizal plants. Zinc and phosphorus concentrations of root and shoot of mycorrhizal plants were greater in all zinc treatments while mycorrhizal plants showed equal or lower tolerance indices to zinc than non-mycorrhizal plants. Yield depressions of mycorrhizal plants may be the result of enhanced zinc and phosphorus concentrations combined with the cost for growth and maintenance of the mycorrhizal fungi.  相似文献   

20.
Rabie GH 《Mycorrhiza》2005,15(3):225-230
Increasing use of saline water in irrigation can markedly change the physical and chemical properties of soil. An experiment was carried out to investigate the interaction between the mycorrhizal fungus Glomus clarum, isolated from a saline soil, and kinetin on the growth and physiology of mungbean plants irrigated with different dilutions of seawater (0, 10, 20, and 30%). The growth, chlorophyll concentration and sugar content of mycorrhizal plants was greater than that of non-mycorrhizal plants under all conditions (with or without seawater). The dry weight of both mycorrhizal and non-mycorrhizal mungbean plants irrigated with 10% seawater was significantly increased by treatment with kinetin. The mycorrhizal symbiosis increased root:shoot dry weight ratio, concentrations of N, P, K, Ca and Mg, plant height, protein content, nitrogen or phosphorus-use efficiencies, and root nitrogenase, acid or alkaline phosphatase activities of seawater-irrigated mungbean plants, with little or no effect of kinetin. Kinetin treatment generally decreased chlorophyll concentration and sugar content in mycorrhizal plants as well as Na/N, Na/P Na/K, Na/Ca and Na/Mg ratios. Root colonization by G. clarum was increased by irrigation with seawater, and kinetin had no consistent effect on fungal development in roots. This study provides evidence that arbuscular mycorrhiza can be much more effective than kinetin applications in protecting mungbean plants against the detrimental effects of salt water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号