首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
J A Zitzewitz  C R Matthews 《Biochemistry》1999,38(31):10205-10214
The alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli is a 268-residue 8-stranded beta/alpha barrel protein. Two autonomous folding units, comprising the first six strands (residues 1-188) and the last two strands (residues 189-268), have been previously identified in this single structural domain protein by tryptic digestion [Higgins, W., Fairwell, T., and Miles, E. W. (1979) Biochemistry 18, 4827-4835]. The larger, amino-terminal fragment, alphaTS(1-188), was overexpressed and independently purified, and its equilibrium and kinetic folding properties were studied by absorbance, fluorescence, and near- and far-UV circular dichroism spectroscopies. The native state of the fragment unfolds cooperatively in an apparent two-state transition with a stability of 3.98 +/- 0.19 kcal mol(-1) in the absence of denaturant and a corresponding m value of 1.07 +/- 0.05 kcal mol(-1) M(-1). Similar to the full-length protein, the unfolding of the fragment shows two kinetic phases which arise from the presence of two discrete native state populations. Additionally, the fragment exhibits a significant burst phase in unfolding, indicating that a fraction of the folded state ensemble under native conditions has properties similar to those of the equilibrium intermediate populated at 3 M urea in full-length alphaTS. Refolding of alphaTS(1-188) is also complex, exhibiting two detectable kinetic phases and a burst phase that is complete within 5 ms. The two slowest isomerization phases observed in the refolding of the full-length protein are absent in the fragment, suggesting that these phases reflect contributions from the carboxy-terminal segment. The folding mechanism of alphaTS(1-188) appears to be a simplified version of the mechanism for the full-length protein [Bilsel, O., Zitzewitz, J. A., Bowers, K.E, and Matthews, C. R.(1999) Biochemistry 38, 1018-1029]. Four parallel channels in the full-length protein are reduced to a pair of channels that most likely reflect a cis/trans proline isomerization reaction in the amino-terminal fragment. The off- and on-pathway intermediates that exist for both full-length alphaTS and alphaTS(1-188) may reflect the preponderance of local interactions in the beta/alpha barrel motif.  相似文献   

2.
The role of native contact topology in the folding of a TIM barrel model based on the alpha-subunit of tryptophan synthase (alphaTS) from Salmonella typhimurium (Protein Data Bank structure 1BKS) was studied using both equilibrium and kinetic simulations. Equilibrium simulations of alphaTS reveal the population of two intermediate ensembles, I1 and I2, during unfolding/refolding at the folding temperature, Tf = 335 K. Equilibrium intermediate I1 demonstrates discrete structure in regions alpha0-beta6 whereas intermediate I2 is a loose ensemble of states with N-terminal structure varying from at least beta1-beta3 (denoted I2A) to alpha0-beta4 at most (denoted I2B). The structures of I1 and I2 match well with the two intermediate states detected in equilibrium folding experiments of Escherichia coli alphaTS. Kinetic folding simulations of alphaTS reveal the sequential population of four intermediate ensembles, I120Q, I200Q, I300Q, and I360Q, during refolding. Kinetic intermediates I120Q, I200Q, and I300Q are highly similar to equilibrium alphaTS intermediates I2A, I2B, and I1, respectively, consistent with kinetic experiments on alphaTS from E. coli. A small population (approximately 10%) of kinetic trajectories are trapped in the I120Q intermediate ensemble and require a slow and complete unfolding step to properly refold. Both the on-pathway and off-pathway I120Q intermediates show structure in beta1-beta3, which is also strikingly consistent with kinetic folding experiments of alphaTS. In the off-pathway intermediate I(120Q), helix alpha2 is wrapped in a nonnative chiral arrangement around strand beta3, sterically preventing the subsequent folding step between beta3 and beta4. These results demonstrate the success of combining kinetic and equilibrium simulations of minimalist protein models to explore TIM barrel folding and the folding of other large proteins.  相似文献   

3.
As a test of the hypothesis that folding mechanisms are better conserved than sequences in TIM barrels, the equilibrium and kinetic folding mechanisms of indole-3-glycerol phosphate synthase (sIGPS) from the thermoacidophilic archaebacterium Sulfolobus solfataricus were compared to the well-characterized models of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. A multifaceted approach combining urea denaturation and far-UV circular dichroism, tyrosine fluorescence total intensity, and tyrosine fluorescence anisotropy was employed. Despite a sequence identity of only 13%, a stable intermediate (I) in sIGPS was found to be similar to a stable intermediate in alphaTS in terms of its thermodynamic properties and secondary structure. Kinetic experiments revealed that the fastest detectable folding event for sIGPS involves a burst-phase (<5ms) reaction that leads directly to the stable intermediate. The slower of two subsequent phases reflects the formation/disruption of an off-pathway dimeric form of I. The faster phase reflects the conversion of I to the native state and is limited by folding under marginally stable conditions and by isomerization or rearrangement under strongly folding conditions. By contrast, alphaTS is thought to fold via an off-pathway burst-phase intermediate whose unfolding controls access to a set of four on-pathway intermediates that comprise the stable equilibrium intermediate. At least three proline isomerization reactions are known to limit their interconversions and lead to a parallel channel mechanism. The simple sequential mechanism deduced for sIGPS reflects the dominance of the on-pathway burst-phase intermediate and the absence of prolyl residues that partition the stable intermediate into kinetically distinguishable species. Comparison of the results for sIGPS and alphaTS demonstrates that the thermodynamic properties and the final steps of the folding reaction are better conserved than the early events. The initial events in folding appear to be more sensitive to the sequence differences between the two TIM barrel proteins.  相似文献   

4.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.  相似文献   

5.
Equilibrium and kinetic studies on the folding of a series of amino acid replacements at position 211 in the alpha subunit of tryptophan synthase from Escherichia coli were performed in order to determine the role of this position in the rate-limiting step in folding. Previous studies [Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T., Onuffer, J. J., & Matthews, C. R. (1986) Biochemistry 25, 2965-2974] have shown that the rate-limiting step corresponds to the association/dissociation of the amino (residues 1-188) and carboxy (residues 189-268) folding units. In terms of the secondary structure, the amino folding unit consists of the first six strands and five alpha helices of this alpha/beta barrel protein. The carboxy folding unit comprises the remaining two strands and three alpha helices; position 211 is in strand 7. Replacement of the wild-type glycine at position 211 with serine, valine, and tryptophan at most alters the rate of dissociation of the folding units; association is not changed significantly. In contrast, glutamic acid and arginine dramatically decelerate and accelerate, respectively, both association and dissociation. The difference in effects is attributed to long-range electrostatic interactions for these charged side chains; steric effects and/or hydrogen bonding play lesser roles. When considered with previous data on replacements at other positions in the alpha subunit [Hurle, M. R., Tweedy, N. B., & Matthews, C. R. (1986) Biochemistry 25, 6356-6360], it is clear that beta strands 6 (in the amino folding unit) and 7 (in the carboxy folding unit and containing position 211) dock late in the folding process.  相似文献   

6.
The effects of four single amino acid replacements on the stability and folding of the alpha subunit of tryptophan synthase from Escherichia coli have been investigated by ultraviolet differences spectroscopy. In previous studies [Miles, E. W., Yutani, K., & Ogasahara, K. (1982) Biochemistry 21, 2586], it had been shown that the urea-induced unfolding at pH 7.8, 25 degrees C, proceeds by the initial unfolding of the less stable carboxyl domain (residues 189-268) followed by the unfolding of the more stable amino domain (residues 1-188). The effects of the Phe-22----Leu, Glu-49----Met, Gly-234----Asp, and Gly-234----Lys mutants on the equilibrium unfolding process can all be understood in terms of the domain unfolding model. With the exception of the Glu-49----Met replacement, the effects on stability are small. In contrast, the effects of three of the four mutations on the kinetics of interconversion of the native form and one of the stable partially folded intermediates are dramatic. The results for the Phe-22----Leu and Gly-234----Asp mutations indicate that these residues play a key role in the rate-limiting step. The Glu-49----Met mutation increases the stability of the native form with respect to that of the intermediate but does not affect the rate-limiting step. The Gly-234----Lys mutation does not affect either the stability or the kinetics of folding for the transition between native and intermediate forms. The changes in stability calculated from the unfolding and refolding rate constants agree quantitatively with those obtained from the equilibrium data. When considered with the results from a previous study on the Gly-211----Glu replacement [Matthews, C. R., Crisanti, M. M., Manz, J. T., & Gepner G. L. (1983) Biochemistry 22, 1445], it can be concluded that the rate-limiting step in the conversion of the intermediate to the native conformation involves either domain association or some other type of molecule-wide phenomenon.  相似文献   

7.
The urea-induced unfolding of a missense mutant of the alpha subunit of tryptophan synthase from Escherichia coli involving the replacement of Gly by Glu at position 211 has been monitored by absorbance changes at 286 nm. Like the wild-type protein, the equilibrium unfolding curve demonstrates the presence of one or more stable intermediates. Comparison of these results with those from the wild-type alpha subunit [Matthews, C. R., & Crisanti, M. M. (1981) Biochemistry 20, 784] shows that the transition from the native conformation to the stable intermediates is displaced to higher urea concentration in the mutant alpha subunit; however, the transition from the intermediates to the unfolded form is unaffected. Kinetic studies show that the amino acid replacement slows the rate of unfolding by an order of magnitude. The effect on refolding rates is complex. One phase, previously assigned to proline isomerization [Crisanti, M. M., & Matthews, C. R. (1981) Biochemistry 20, 2700], is unaffected by the substitution. The rate of the second phase, which is urea dependent down to about 1 M urea, is slower than the corresponding phase in the wild-type protein by approximately a factor of 2. Below about 1 M urea, the rate of this phase becomes urea independent and identical with that of the wild-type alpha subunit. This change in urea dependence has been ascribed to a change in the nature of the rate-limiting step for this process from one involving folding to one involving proline isomerization. The results support the folding model for the alpha subunit proposed previously [Matthews, C. R., & Crisanti, M. M. (1981) Biochemistry 20, 784] and clarify the role of proline isomerization in limiting the rate of folding.  相似文献   

8.
To test the roles of motif and amino acid sequence in the folding mechanisms of TIM barrel proteins, hydrogen-deuterium exchange was used to explore the structure of the stable folding intermediates for the of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS). Previous studies of the urea denaturation of sIGPS revealed the presence of an intermediate that is highly populated at approximately 4.5 M urea and contains approximately 50% of the secondary structure of the native (N) state. Kinetic studies showed that this apparent equilibrium intermediate is actually comprised of two thermodynamically distinct species, I(a) and I(b). To probe the location of the secondary structure in this pair of stable on-pathway intermediates, the equilibrium unfolding process of sIGPS was monitored by hydrogen-deuterium exchange mass spectrometry. The intact protein and pepsin-digested fragments were studied at various concentrations of urea by electrospray and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. Intact sIGPS strongly protects at least 54 amide protons from hydrogen-deuterium exchange in the intermediate states, demonstrating the presence of stable folded cores. When the protection patterns and the exchange mechanisms for the peptides are considered with the proposed folding mechanism, the results can be interpreted to define the structural boundaries of I(a) and I(b). Comparison of these results with previous hydrogen-deuterium exchange studies on another TIM barrel protein of low sequence identify, alpha-tryptophan synthase (alphaTS), indicates that the thermodynamic states corresponding to the folding intermediates are better conserved than their structures. Although the TIM barrel motif appears to define the basic features of the folding free energy surface, the structures of the partially folded states that appear during the folding reaction depend on the amino acid sequence. Markedly, the good correlation between the hydrogen-deuterium exchange patterns of sIGPS and alphaTS with the locations of hydrophobic clusters defined by isoleucine, leucine, and valine residues suggests that branch aliphatic side-chains play a critical role in defining the structures of the equilibrium intermediates.  相似文献   

9.
J M Betton  M Desmadril  J M Yon 《Biochemistry》1989,28(13):5421-5428
The accessibility of peptide bonds to cleavage by Staphylococcus aureus V8 protease bound on a Sepharose matrix was used as a conformational probe in the study of the unfolding-folding transition of phosphoglycerate kinase induced by guanidine hydrochloride. It was shown that the protein is resistant to proteolysis below a denaturant concentration of 0.4 M. The transition curve, determined by susceptibility toward proteolysis, was similar to that obtained following the enzyme activity [Betton et al. (1984) Biochemistry 23, 6654-6661]. Proteolysis under conditions where the folding intermediates are more populated, i.e., 0.7 M Gdn.HCl, gave two major fragments of Mr 25K and 11K, respectively. The 25K polypeptide fragment was identified as the carboxy-terminal domain. Its conformation was similar to that of a folding intermediate trapped at a critical concentration of denaturant, and in this form, it was not able to bind nucleotide substrates [Mitraki et al. (1987) Eur. J. Biochem. 163, 29-34]. From the present data and those previously reported, we concluded that the intermediate detected on the folding pathway of phosphoglycerate kinase has a partially folded carboxy-terminal domain and an unfolded amino-terminal domain.  相似文献   

10.
The urea-induced equilibrium unfolding of the alpha-subunit of tryptophan synthase (alphaTS) from Escherichia coli can be described by a four-state model, N right harpoon over left harpoon I1 right harpoon over left harpoon I2 right harpoon over left harpoon U, involving two highly populated intermediates, I1 and I2 [Gualfetti, P. J., Bilsel, O., and Matthews, C. R. (1999) Protein Sci. 8, 1623-1635]. To extend the physical characterization of these stable forms, the apparent radius was measured by several techniques. Size-exclusion chromatography (SEC), analytical ultracentrifugation (UC), and dynamic light scattering (DLS) experiments yield an apparent Stokes radius, R(s), of approximately 24 A for the native state of alphaTS. The small-angle X-ray scattering (SAXS) experiment yields a radius of gyration, R(g), of 19.1 A, consistent with the value predicted from the X-ray structure and the Stokes radius. As the equilibrium is shifted to favor I1 at approximately 3.2 M and I2 at 5.0 M urea, SEC and UC show that R(s) increases from approximately 38 to approximately 52 A. Measurements of the radius by DLS and SAXS between 2 and 4.5 M urea were complicated by the self-association of the I1 species at the relatively high concentrations required by those techniques. Above 6 M urea, SEC and UC reveal that R(s) increases linearly with increasing urea concentration to approximately 54 A at 8 M urea. The measurements of R(s) by DLS and R(g) by SAXS are sufficiently imprecise that both values appear to be identical for the I2 and U states and, considering the errors, are in good agreement with the results from SEC and UC. Thermodynamic parameters extracted from the SEC data for the N right harpoon over left harpoon I1 and I1 right harpoon over left harpoon I2 transitions agree with those from the optical data, showing that this technique accurately monitors a part of the equilibrium model. The lack of sensitivity to the I2 right harpoon over left harpoon U transition, beyond a simple swelling of both species with increasing urea concentration, implies that the Stokes radii for the I2 and U states are not distinguishable. Surprisingly, the hydrophobic core known to stabilize I2 at 5.0 M urea [Saab-Rincón, G., Gualfetti, P. J., and Matthews, C. R. (1996) Biochemistry 35, 1988-1994] develops without a significant contraction of the polypeptide, i.e., beyond that experienced by the unfolded form at decreasing urea concentrations. Kratky plots of the SAXS data, however, reveal that I2, similar to N and I1, has a globular structure while U has a more random coil-like form. By contrast, the formation of substantial secondary structure and the burial of aromatic side chains in I1 and, eventually, N are accompanied by substantial decreases in their Stokes radii and, presumably, the size of their respective conformational ensembles.  相似文献   

11.
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS.  相似文献   

12.
Competing views of the products of sub-millisecond folding reactions observed in many globular proteins have been ascribed either to the formation of discrete, partially folded states or to the random collapse of the unfolded chain under native-favoring conditions. To test the validity of these alternative interpretations for the stopped-flow burst-phase reaction in the (betaalpha)8, TIM barrel motif, a series of alanine replacements were made at five different leucine or isoleucine residues in the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli. This protein has been proposed to fold, in the sub-millisecond time range, to an off-pathway intermediate with significant stability and approximately 50% of the far-UV circular dichroism (CD) signal of the native conformation. Individual alanine replacements at any of three isoleucine or leucine residues in either alpha1, beta2 or beta3 completely eliminate the off-pathway species. These variants, within 5 ms, access an intermediate whose properties closely resemble those of an on-pathway equilibrium intermediate that is highly populated at moderate urea concentrations in wild-type alphaTS. By contrast, alanine replacements for leucine residues in either beta4 or beta6 destabilize but preserve the off-pathway, burst-phase species. When considered with complementary thermodynamic and kinetic data, this mutational analysis demonstrates that the sub-millisecond appearance of CD signal for alphaTS reflects the acquisition of secondary structure in a distinct thermodynamic state, not the random collapse of an unfolded chain. The contrasting results for replacements in the contiguous alpha1/beta2/beta3 domain and the C-terminal beta4 and beta6 strands imply a heterogeneous structure for the burst-phase species. The alpha1/beta2/beta3 domain appears to be tightly packed, and the C terminus appears to behave as a molten-globule-like structure whose folding is tightly coupled to that of the alpha1/beta2/beta3 domain.  相似文献   

13.
The molten globule model for the beginning of the folding process, which originated with Kuwajima's studies of alpha-lactalbumin (Kuwajima, K., 1989, Proteins Struct. Funct. Genet. 6, 87-103, and references therein), states that, for those proteins that exhibit equilibrium molten globule intermediates, the molten globule is a major kinetic intermediate near the start of the folding pathway. Pulsed hydrogen-deuterium exchange measurements confirm this model for apomyoglobin (Jennings, P.A. & Wright, P.E., in prep.). The energetics of the acid-induced unfolding transition, which have been determined by fitting a minimal three-state model (N<-->I<-->U; N = native, I = molten globule intermediate, U = unfolded) show that I is more stable than U at neutral pH (Barrick, D. & Baldwin, R.L., 1993, Biochemistry 32, in press), which provides an explanation for why I is formed from U at the start of folding. Hydrogen exchange rates measured by two-dimensional NMR for individual peptide NH protons, taken together with the CD spectrum of I, indicate that moderately stable helices are present in I at the locations of the A, G, and H helices of native myoglobin (Hughson, F.M., Wright, P.E., & Baldwin, R.L., 1990, Science 249, 1544-1548). Directed mutagnesis experiments indicate that the interactions between the A, G, and H helices in I are loose (Hughson, F.M., Barrick, D., & Baldwin, R.L., 1991, Biochemistry 30, 4113-4118), which can explain why I is formed rapidly from U at the start of folding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The equilibrium and kinetic properties for the urea-induced unfolding of the alpha subunit of tryptophan synthase from Escherichia coli, Salmonella typhimurium, and five interspecies hybrids were compared to determine the role of protein folding in evolution. The parent proteins differ at 40 positions in the sequence of 268 amino acids, and the hybrids differ by up to 15 amino acids from the Escherichia coli alpha subunit. The results show that all the proteins follow the same folding mechanism and are consistent with a previously proposed hypothesis [Hollecker, M., & Creighton, T. E. (1983) J. Mol. Biol. 168, 409; Krebs, H., Schmid, F. X., & Jaenicke, R. (1983) J. Mol. Biol. 169, 619] that the folding mechanisms are conserved in homologous proteins. Analysis of the kinetic data suggests that the 15 positions at which the parent proteins differ in the amino folding unit, residues 1-188, do not play a role in a rate-limiting step in folding that has been previously identified as the association of the amino and carboxyl folding units [Beasty, A. M., Hurle, M. R., Manz, J. T., Stackhouse, T. S., Onuffer, J. J., & Matthews, C. R. (1986) Biochemistry 25, 2965]. One or more of the 25 positions at which the parent proteins differ in the carboxyl folding unit, residues 189-268, do appear to play a role in this same rate-limiting step.  相似文献   

15.
Conformational states of ribulosebisphosphate carboxylase (Rubisco) from Rhodospirillum rubrum were examined by far-UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-naphthalenesulfonate (ANS) binding. At pH 2 and low ionic strength (I = 0.01), Rubisco adopts an unfolded, monomeric conformation (UA1 state) as judged by far-UV CD and tryptophan fluorescence. As with other acid-unfolded proteins [Goto, Y., Calciano, L. J., & Fink, A. L. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 573-577], an intermediate conformation (A1 state) is observed at pH 2 and high ionic strength. The A1 state has an alpha-helical content equivalent to 64% of that present in the native dimer (N2 state). However, fluorescence measurements indicate that the tertiary structure of the A1 state is largely disordered. A site-directed mutant, K168E, which exists as a stable monomer [Mural, R. J., Soper, T. S., Larimer, F. W., & Hartman, F. C. (1990) J. Biol. Chem. 265, 6501-6505] was used to characterize the "native" monomer (N1 state). The far-UV CD spectra of the N1 and N2 states are almost identical, indicating a similar secondary structure content. However, the tertiary structure of the N1 state is less ordered than that of the N2 state. Nevertheless, when appropriately complemented in vitro, K168E forms an active heterodimer. Upon neutralization of acid-denatured Rubisco or dilution of guanidine hydrochloride-denatured Rubisco, unstable folding intermediates (I1 state) are rapidly formed. At concentrations at or below the "critical aggregation concentration" (CAC), the I1 state reverts spontaneously but slowly to the native states with high yield (greater than 65%). The CAC is temperature-dependent. At concentrations above the CAC, the I1 and the A1 states undergo irreversible aggregation. The commitment to aggregation is rapid [ef. Goldberg, M. E., Rudolph, R., & Jaenicke, R. (1991) Biochemistry 30, 2790-2797] and proceeds until the concentration of folding intermediate(s) has fallen to the CAC. In the presence of a molar excess of chaperonin 60 oligomers, the I1 state forms a stable binary complex. No stable binary complex between chaperonin 60 and the N1 state could be detected. Formation of the chaperonin 60-I1 binary complex arrests the spontaneous folding process. The I1 state becomes resistant to interaction with chaperonin 60 with kinetics indistinguishable from those associated with the appearance of the native states. In vitro complementation analysis indicated that the product of the chaperonin-facilitated process is monomeric.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
A gene encoding cobalamin-dependent methionine synthase (EC 2.1.1.13) has been isolated from a plasmid library of Escherichia coli K-12 DNA by complementation to methionine prototrophy in an E. coli strain lacking both cobalamin-dependent and -independent methionine synthase activities (RK4536:metE, metHH). Maxicell expression of a series of plasmids containing deletions in the metH structural gene was employed to map the position and orientation of the gene on the cloned DNA fragment. A 6.3-kilobase EcoRI-SalI fragment containing the gene was cloned into the sequencing vector pGEM3B for double-stranded DNA sequencing; the MetH coding region consists of 3372 nucleotides. The enzyme was purified from an overproducing strain of E. coli harboring the recombinant plasmid, in which the level of methionine synthase was elevated 30- to 40-fold over wild-type E. coli. Recombinant enzyme is a protein of 123,640 molecular weight and has a turnover number of 1,450 min-1 in the standard assay. These values are to be compared with previously reported values of 133,000 for the molecular weight and 1,240-1,560 min-1 for the turnover number of the homogenous enzyme purified from a wild-type strain of E. coli B (Frasca, V., Banerjee, R. V., Dunham, W. R., Sands, R. H., and Matthews, R. G. (1988) Biochemistry 27, 8458-8465). Limited proteolysis of the native enzyme with trypsin resulted in loss of enzyme activity but retention of bound cobalamin on a peptide fragment of 28,000 molecular weight. This fragment has been shown to extend from residue 643 to residue 900 of the 1124-residue deduced amino acid sequence.  相似文献   

17.
Interactive computer graphics was used as a tool in studying the cleavage mechanism of the model substrate Z-Phe-Phe-Leu-Trp by the zinc endopeptidase thermolysin. Two Michaelis complexes and three binding orientations of the tetrahedral intermediate to the crystal structure of thermolysin were investigated. Our results indicate that a Michaelis complex, which does not involve coordination of the scissile peptide to the zinc, is consistent with available experimental data and the most plausible of the two complexes. A tetrahedral intermediate complex wherein the two oxygens of the hydrated scissile peptide straddle the zinc in a bidentate fashion results in the most favorable interactions with the active site. The preferred tetrahedral intermediate and Michaelis complex provide a rationalization for the published substrate data. A trajectory for proceeding from the Michaelis complex to the tetrahedral intermediate is proposed. This trajectory involves a simultaneous activation of the zinc-bound water molecule concurrent with attack on the scissile peptide. A detailed ordered product release mechanism is also presented. These studies suggest some modifications and a number of extensions to the mechanism proposed earlier [Kester, W. R., & Matthews, B. W. (1977) Biochemistry 16, 2506; Holmes, M. A., & Matthews, B. W. (1981) Biochemistry 20, 6912]. The binding mode of the thermolysin inhibitor N-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan [Monzingo, A. F., & Matthews, B. W. (1984) Biochemistry (preceding paper in this issue)] is compared with that of the preferred tetrahedral intermediate, providing insight into this inhibitor design.  相似文献   

18.
Y Zhu  C C Chen  J A King  L B Evans 《Biochemistry》1992,31(43):10591-10601
The native state of a protein molecule in aqueous solutions represents one of the lowest states of Gibbs energy [Anfinsen, C.B. (1973) Science 181, 223-230]. Much progress has been made about the rules of protein folding [King, J. (1989) Chem. Eng. News 67, 32-54] and the dominant forces in protein folding [Dill, K.A. (1990) Biochemistry 29, 7133-7155]. However, the quantitative contributions of different Gibbs energy terms to protein stability remains a controversial issue [Moult, J., & Unger, R. (1991) Biochemistry 30, 3816-3824]. A molecular thermodynamic model has been proposed for the Gibbs energy of folding a residue in aqueous homopolypeptides from a random-coiled state to either the alpha-helix state or the beta-sheet state [Chen, C.-C., Zhu, Y., King, J.A., & Evans, L.B. (1992) Biopolymers 32, 1375-1392]. In this work, we present a generalization of the molecular thermodynamic model for the Gibbs energy of folding natural and synthetic heteropolypeptides from random-coiled conformations into alpha-helical conformations. The generalized model incorporates the intrinsic folding potential due to residue-solvent interactions, the cooperative folding effect due to residue-residue interactions, and the location and length of alpha-helices. The utility of the model was demonstrated by examining the stability of alpha-helical conformations of a number of natural polypeptides including C-peptide (residues 1-13) and S-peptide (residues 1-20) of RNase A (bovine pancreatic ribonuclease A), the P alpha fragment in BPTI (bovine pancreatic trypsin inhibitor), and synthetic polypeptides (the copolymers of different amino acid residues) including alanine-based peptides (16 or 17 residues long) in water. The computed Gibbs energies correspond well with the experimental data on helicity. The results also accounted for the effects of amino acid substitution and temperature on the stability of alpha-helical conformations of the test polypeptides.  相似文献   

19.
Mutants of the dimeric Escherichia coli trp aporepressor are constructed by replacement of the two tryptophan residues in each subunit in order to assess the effects on equilibrium and kinetic fluorescence properties of the folding reaction. The three kinetic phases detected by intrinsic tryptophan fluorescence in refolding of the wild-type aporepressor are also observed in folding of both Trp 19 to Phe and Trp 99 to Phe single mutants, demonstrating that these phases correspond to global rather than local conformational changes. Comparison of equilibrium fluorescence (Royer, C.A., Mann, C.J., & Matthews, C.R., 1993, Protein Sci. 2, 1844-1852) and circular dichroism transition curves induced by urea shows that replacement of either Trp 19 or Trp 99 results in noncoincident behavior. Unlike the wild-type protein (Gittelman, M.S. & Matthews, C.R., 1990, Biochemistry 29, 7011-7020), tertiary and/or quaternary structures are disrupted at lower denaturant concentration than is secondary structure. The equilibrium results can be interpreted in terms of enhancement in the population of a monomeric folding intermediate in which the lone tryptophan residue is highly exposed to solvent, but in which substantial secondary structure is retained. The location of both mutations at the interface between the two subunits (Zhang, R.G., et al., 1987, Nature 327, 591-597) provides a simple explanation for this phenomenon.  相似文献   

20.
The urea-induced equilibrium unfolding of the alpha subunit of tryptophan synthase (alphaTS), a single domain alpha/beta barrel protein, displays a stable intermediate at approximately 3.2 M urea when monitored by absorbance and circular dichroism (CD) spectroscopy (Matthews CR, Crisanti MM, 1981, Biochemistry 20:784-792). The same experiment, monitored by one-dimensional proton NMR, shows another cooperative process between 5 and 9 M urea that involves His92 (Saab-Rincón G et al., 1993, Biochemistry 32:13,981-13,990). To further test and quantify the implied four-state model, N <--> I1 <--> I2 <--> U, the urea-induced equilibrium unfolding process was followed by tyrosine fluorescence total intensity, tyrosine fluorescence anisotropy and far-UV CD. All three techniques resolve the four stable states, and the transitions between them when the FL total intensity and CD spectroscopy data were analyzed by the singular value decomposition method. Relative to U, the stabilities of the N, I1, and I2 states are 15.4, 9.4, and 4.9 kcal mol(-1), respectively. I2 partially buries one or more of the seven tyrosines with a noticeable restriction of their motion; it also recovers approximately 6% of the native CD signal. This intermediate, which is known to be stabilized by the hydrophobic effect, appears to reflect the early coalescence of nonpolar side chains without significant organization of the backbone. I1 recovers an additional 43% of the CD signal, further sequesters tyrosine residues in nonpolar environments, and restricts their motion to an extent similar to N. The progressive development of a higher order structure as the denaturant concentration decreases implies a monotonic contraction in the ensemble of conformations that represent the U, I2, I1, and N states of alphaTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号