首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of recombinant human keratinocyte growth factor (rHuKGF, Delta23N-KGF, palifermin) protects the lung against a variety of injurious stimuli. The exact mechanisms leading to lung protection are unknown. Alterations in the non-neuronal cholinergic system of the lung might be involved, as vital pulmonary functions are regulated by acetylcholine. Here, we investigated the effect of KGF on the expression of nicotinic acetylcholine receptor subunits alpha7, alpha9 and alpha10 in rat lungs. Adult rats were treated via intratracheal instillation with rHuKGF or with an equivalent volume of PBS. The expression of nicotinic acetylcholine receptor subunits was analyzed by real-time RT-PCR, immunoblotting and immunohistochemistry. Treatment with rHuKGF led to a decreased expression of nicotinic receptor subunit alpha7 in the total lung. In contrast, the expression of the receptor subunits alpha9 and alpha10 was up-regulated. In conclusion, nicotinic acetylcholine receptors are differentially regulated by KGF treatment in vivo, which might result in changes in the biological effects of acetylcholine.  相似文献   

2.
3.
A new subunit, beta 2, of the neuronal nicotinic receptor family has been identified. This subunit has the structural features of a non-agonist-binding subunit. We provide evidence that beta 2 can substitute for the muscle beta 1 subunit to form a functional nicotinic receptor in Xenopus oocytes. Expression studies performed in oocytes have demonstrated that three different neuronal nicotinic acetylcholine receptors can be formed by the pairwise injection of beta 2 mRNA and each of the neuronal alpha subunit mRNAs. The beta 2 gene is expressed in PC12 cells and in areas of the central nervous system where the alpha 2, alpha 3, and alpha 4 genes are expressed. These results lead us to propose that the nervous system expresses diverse forms of neuronal nicotinic acetylcholine receptors by combining beta 2 subunits with different agonist-binding alpha subunits.  相似文献   

4.
5.
6.
Neuronal nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunit are well represented in the brain and some non-neuronal tissues, and their malfunctioning is associated with diverse pathologies. Therefore, detection and quantification of alpha7 nAChR are important tasks. The affinity-purified antibodies were prepared against the 1-23 and 179-190 fragments of the human and rat alpha7 nAChR extracellular domain. The specificity and selectivity of these alpha7 (1-23) and alpha7 (179-190) antibodies was tested by ELISA in model systems: the E. coli-expressed alpha7 subunit extracellular domain and the pituitary cell line GH(4)C(1) stably expressing human alpha7 nAChR. On the rat brain slices two antibodies and biotinylated alpha-cobratoxin specifically stained the hippocampus region known to be rich in alpha7 nAChR. Western blot analysis revealed that in the human thalamus membranes and in rat brain membranes, antibodies alpha7 (1-23) stained a single band of 62 kDa, while the alpha7 (179-190) antibodies stained a doublet of 53-54 kDa. The results obtained show that utilization of model systems and a combination of several antibodies with appropriately labeled toxins may provide better ways for detection of alpha7 nAChR.  相似文献   

7.
Nicotinic acetylcholine receptors play important roles in numerous cognitive processes as well as in several debilitating central nervous system (CNS) disorders. In order to fully elucidate the diverse roles of nicotinic acetylcholine receptors in CNS function and dysfunction, a detailed knowledge of their cellular and subcellular localizations is essential. To date, methods to precisely localize nicotinic acetylcholine receptors in the CNS have predominantly relied on the use of anti-receptor subunit antibodies. Although data obtained by immunohistology and immunoblotting are generally in accordance with ligand binding studies, some discrepancies remain, in particular with electrophysiological findings. In this context, nicotinic acetylcholine receptor subunit-deficient mice should be ideal tools for testing the specificity of subunit-directed antibodies. Here, we used standard protocols for immunohistochemistry and western blotting to examine the antibodies raised against the alpha3-, alpha4-, alpha7-, beta2-, and beta4-nicotinic acetylcholine receptor subunits on brain tissues of the respective knock-out mice. Unexpectedly, for each of the antibodies tested, immunoreactivity was the same in wild-type and knock-out mice. These data imply that, under commonly used conditions, these antibodies are not suited for immunolocalization. Thus, particular caution should be exerted with regards to the experimental approach used to visualize nicotinic acetylcholine receptors in the brain.  相似文献   

8.
We demonstrated previously the involvement of a nicotinic acetylcholine receptor containing an alpha7 subunit in the human sperm acrosome reaction (a modified exocytotic event essential to fertilization). Here we report the presence in human sperm of alpha7, alpha9, alpha3, alpha5, and beta4 nicotinic acetylcholine receptor subunits and the following proteins known to be associated with the receptor in the somatic cell: rapsyn and the tyrosine kinases c-SRC and FYN. The alpha7 subunit appears to exist as a homomer in the posterior post-acrosomal and neck regions of sperm and is probably linked to the cytoskeleton via rapsyn. The alpha3, alpha5, and beta4 subunits are present in the sperm flagellar mid-piece of sperm and possibly exist as alpha3alpha5beta4 and/or alpha3beta4 channels. The alpha9 subunit is present in the sperm mid-piece. We detected the FYN and c-SRC tyrosine kinases in the flagellar mid-piece region. Both co-precipitated only with the nicotinic acetylcholine receptor beta4 subunit. Immunolocalization with a C-terminal SRC kinase antibody, which recognizes several members of SRC kinase family, detected a SRC kinase co-localized with the alpha7 subunit in the neck region of sperm. Immunoprecipitation studies with that antibody demonstrated that the alpha7 subunit is associated with a SRC kinase. Antagonists of tyrosine phosphorylation inhibited the acetylcholine-initiated acrosome reaction, suggesting the involvement of a SRC kinase in the acrosome reaction.  相似文献   

9.
10.
11.
Biallas S  Wilker S  Lips KS  Kummer W  Grando SA  Padberg W  Grau V 《Life sciences》2007,80(24-25):2286-2289
The success of clinical lung transplantation is poor in comparison to other solid organ transplants and novel therapeutic approaches are badly needed. In the view of the recent discovery of anti-inflammatory pathways mediated via nicotinic acetylcholine receptors, we investigated changes in this system in pulmonary isografts and allografts by immunohistochemistry. Lung transplantation was performed in the isogeneic Lewis to Lewis rat strain combination. For allogeneic transplantation Dark Agouti rats were used as donors. Nicotinic alpha9 and alpha10 acetylcholine receptor subunits were detected on alveolar macrophages as well as in the lung parenchyma of native and transplanted lungs. The expression of both receptor subunits was up-regulated in the parenchyma of day 4 allografts. These allografts were characterized by accumulations of alveolar macrophages strongly expressing the alpha9 and the alpha10 receptor subunit. Therapeutic application of nicotinic agonists might down-modulate pro-inflammatory functions of alveolar macrophages and protect pulmonary transplants.  相似文献   

12.
Nicotine consumed upon smoking affects numerous physiological processes through nicotinic acetylcholine receptors, which mediate cholinergic regulation by the neuronal and endogenous acetylcholine. Consequently, nicotinic receptors are expressed in many non-excitable tissues including the blood. In spite of the documented effect of nicotine on hematopoiesis, little is known about the expression and role of nicotinic receptors in the course of blood cell differentiation. The aim of the present study was to investigate whether and how nicotinic receptors are involved in the development of myeloid and erythroid cells within the bone marrow. The presence of nicotinic receptors containing alpha4(beta2) and alpha7 subunits in the bone marrow cells of C57Bl/6 mice was shown by the binding of [125I]-alpha-bungarotoxin or [3H]-Epibatidine and by flow cytometry with subunit-specific antibodies or fluorescein-labeled alpha-cobratoxin. Both TER119+ (erythroid) and CD16+CD43med (myeloid) progenitor cells bound more alpha4-specific antibodies than their mature forms, while the binding of alpha-cobratoxin and alpha7-specific antibodies was also high in mature cells. According to morphological analysis, either the absence of alpha7-containing nicotinic receptors in knockout mice or their desensitization in mice chronically treated with nicotine decreased the number of myeloid and erythroid progenitors and junior cells. In contrast, the absence of beta2-containing receptors favored myelocyte generation and erythroid cell maturation. It is concluded that the development of both myeloid and erythroid cell lineages is regulated by endogenous cholinergic ligands and can be affected by nicotine through alpha7- and alpha4beta2-containing nicotinic receptors, which play different roles in the course of the cell maturation.  相似文献   

13.
14.
Evolution of nicotinic acetylcholine receptor subunits   总被引:7,自引:0,他引:7  
A phylogenetic tree of a gene family of nicotinic acetylcholine receptor subunits was constructed using 84 nucleotide sequences of receptor subunits from 18 different species in order to elucidate the evolutionary origin of receptor subunits. The tree constructed showed that the common ancestor of all subunits may have appeared first in the nervous system. Moreover, we suggest that the alpha 1 subunits in the muscle system originated from the common ancestor of alpha 2, alpha 3, alpha 4, alpha 5, alpha 6, and beta 3 in the nervous system, whereas the beta 1, gamma, delta, and epsilon subunits in the muscle system shared a common ancestor with the beta 2 and beta 4 subunits in the nervous system. Using the ratio (f) of the number of nonsynonymous substitutions to that of synonymous substitutions, we predicted the functional importance of subunits. We found that the alpha 1 and alpha 7 subunits had the lowest f values in the muscle and nervous systems, respectively, indicating that very strong functional constraints work on these subunits. This is consistent with the fact that the alpha 1 subunit has sites binding to the ligand, and the alpha 7-containing receptor regulates the release of the transmitter. Moreover, the window analysis of the f values showed that strong functional constraints work on the so-called M2 region in all five types of muscle subunits. Thus, the window analysis of the f values is useful for evaluating the degree of functional constraints in not only the entire gene region, but also the within-gene subregion.   相似文献   

15.
The assembly of nicotinic alpha1beta1gammadelta, alpha3beta4, and alpha7 receptors and 5-hydroxytryptamine 3A (5HT3A) receptors was comparatively evaluated in Xenopus oocytes by blue native PAGE analysis. While alpha1betagammadelta subunits, alpha3beta4 subunits, and 5HT3A subunits combined efficiently to pentamers, alpha7 subunits existed in various assembly states including trimers, tetramers, pentamers, and aggregates. Only alpha7 subunits that completed the assembly process to homopentamers acquired complex-type carbohydrates and appeared at the cell surface. We conclude that Xenopus oocytes have a limited capacity to guide the assembly of alpha7 subunits, but not 5HT3A subunits to homopentamers. Accordingly, ER retention of imperfectly assembled alpha7 subunits rather than inefficient routing of fully assembled alpha7 receptors to the cell surface limits surface expression levels of alpha7 nicotinic acetylcholine receptors.  相似文献   

16.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

17.
α7 nAChR是配体门控离子通道蛋白超家族的典型代表,烟碱型乙酰胆碱受体的一个重要亚型,是复杂的五聚体跨膜蛋白,介导Na^+、Ca^2+流入,K^+流出,尤以对Ca^2+通透性高。α7 nAChR分布广泛且功能多样,不仅分布于中枢和外周神经系统,介导神经元的快速突触传递,其在许多非神经元细胞和组织中亦有表达,包括内皮细胞,支气管上皮细胞,皮肤角蛋白细胞,膀胱上皮细胞,血管平滑肌等,并参与其功能调节及功能障碍相关疾病的病理生理过程,如可调节细胞质运动和细胞间黏附,细胞增殖,血管生成以及肿瘤的侵袭和迁移。本文主要介绍烟碱型乙酰胆碱受体α7 亚型在不同胚层来源的上皮组织细胞中的表达及其功能特征,以期通过激活或抑制α7 nAChR的表达来降低与其密切相关疾病的发生率。  相似文献   

18.
Transient transfection has not been a successful method to express the alpha7 nicotinic acetylcholine receptor such that these receptors are detected on the cell surface. This is not the case for all ligand-gated ion channels. Transient transfection with the 5-hydroxytryptamine type 3 subunit cDNA results in detectable surface receptor expression. Cell lines stably expressing the alpha7 nicotinic acetylcholine receptor produce detectable, albeit variable, levels of surface receptor expression. alpha7 nicotinic acetylcholine receptor surface expression is dependent, at least in part, on cell-specific factors. In addition to factors provided by the cells used for receptor expression, we hypothesize that the surface expression level in transfected cells is an intrinsic property of the receptor protein under study. Employing a set of alpha7-5-hydroxytryptamine type 3 chimeric receptor subunit cDNAs, we expressed these constructs in a transient transfection system and quantified surface receptor expression. We have identified amino acids that control receptor distribution between surface and intracellular pools; surface receptor expression can be manipulated without affecting the total number of receptors. These determinants function independently of the cell line used for expression and the transfection method employed. How these surface expression determinants in the alpha7 nicotinic acetylcholine receptor might influence synaptic efficacy is discussed.  相似文献   

19.
Li XW  Wang H 《Life sciences》2006,78(16):1863-1870
Alpha 7 nicotinic acetylcholine receptor (alpha7 nAChR) is widely expressed in the central and peripheral nervous systems, and is also found in several non-neuronal tissues, such as endothelial cells (ECs), bronchial epithelial cells, skin keratinocytes and vascular smooth muscle cells. Recent evidence suggests that alpha7 nAChR is involved in angiogenesis. Here, we investigated the feasibility of alpha7 nAChR for revascularization in ischemic heart disease. RT-PCR and immunohistochemistry were used to examine the expression of alpha7 nAChR in human umbilical vein endothelial cell (HUVECs). The cellular function was examined using MTT, fluorescence confocal microscopy and angiogenesis assay in vitro. The capillary density in the rat model of myocardial infarction (MI) was investigated using immunohistochemistry. The results showed that alpha7 nAChR agonists choline increased the expression of alpha7 nAChR mRNA and protein, the intracellular Ca 2+ concentration, proliferation and tube formation of ECs. Reverse effects were observed by using alpha7 nAChR antagonist alpha-BTX. Furthermore, in the rat model of MI, alpha7 nAChR agonist enhanced the capillary density in ischemic tissues, whereas antagonist mecamylamine and alpha-BTX inhibited the effect. Our results suggest that alpha7 nAChR is involved in the regulation of cellular function in ECs, and capillary formation in MI, which are the important steps of angiogenesis. Therefore, alpha7 nAChR on ECs may be a new endothelium target for revascularization in therapeutic angiogenesis of ischemic heart disease.  相似文献   

20.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号