共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibrillin: from domain structure to supramolecular assembly. 总被引:2,自引:0,他引:2
In the last 5 years, significant progress has been made in understanding the structure and function of all the major domains composing the fibrillins. A previous review [Meth. Enzymol. 245 (1994), 29] focused on the isolation of fibrillin monomers and fibrillin-containing polymers (microfibrils). In this article, information gained from recent studies which have further elucidated molecular structure and investigated effects of mutations on structural and functional properties will be summarized. In addition, studies of functional domains in fibrillins which may be important in assembling microfibrils will be discussed. Throughout this review, the authors have attempted to identify areas of research which have been controversial. In the conclusion, we raise important questions which remain unresolved. 相似文献
2.
Marson A Rock MJ Cain SA Freeman LJ Morgan A Mellody K Shuttleworth CA Baldock C Kielty CM 《The Journal of biological chemistry》2005,280(6):5013-5021
We have defined the homotypic interactions of fibrillin-1 to obtain new insights into microfibril assembly. Dose-dependent saturable high affinity binding was demonstrated between N-terminal fragments, between furin processed C-terminal fragments, and between these N- and C-terminal fragments. The N terminus also interacted with a downstream fragment. A post-furin cleavage site C-terminal sequence also interacted with the N terminus, with itself and with the furin-processed fragment. No other homotypic fibrillin-1 interactions were detected. Some terminal homotypic interactions were inhibited by other terminal sequences, and were strongly calcium-dependent. Treatment of an N-terminal fragment with N-ethylmaleimide reduced homotypic binding. Microfibril-associated glycoprotein-1 inhibited N- to C-terminal interactions but not homotypic N-terminal interactions. These fibrillin-1 interactions are likely to regulate pericellular fibrillin-1 microfibril assembly. 相似文献
3.
Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation 总被引:12,自引:1,他引:11 下载免费PDF全文
《The Journal of cell biology》1980,87(2):442-450
The influence of the light microscopical stains, Calcofluor white and Congo red, on the process of chitin microfibril formation of the chrysoflagellate alga Poterioochromonas stipitata was studied with light and electron microscopy. There is a concentration-dependent inhibition of lorica formation with both dyes. In the presence of the inhibitors malformed loricae are made, which do not show the usual ultrastructure and arrangement of the chitin microfibrils. Instead of long, laterally associated microfibrils, short rods or irregular networks of subelementary (15-25 A) fibrils are found. Microfibril assembly obviously takes place on the accessible outside of the plasma membrane. There must be a gap between the polymerization and microfibril formation reactions, allowing the stains to bind to the polymerized subunits. Thus, later association of these units to form microfibrils is disturbed. The microfibril-orienting mechanism also depends on normal microfibril formation. A model summarizing these hypotheses is suggested. 相似文献
4.
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented. 相似文献
5.
Tsuruga E Sato A Ueki T Nakashima K Nakatomi Y Ishikawa H Yajima T Sawa Y 《Tissue & cell》2009,41(2):85-89
Fibrillin-1 is the major structural component of extracellular microfibrils. However, the mechanism by which extracellular fibrillin-1 assembles into microfibrils is not fully understood. Fibrillin-1 contains the Arg-Gly-Asp (RGD) motif, which may allow binding to RGD-recognizing integrins. We hypothesized that integrin αvβ3 on the cell surface of human periodontal ligament (PDL) fibroblasts may influence fibrillin-1 assembly into cell/matrix layers. We treated PDL fibroblasts with an integrin αvβ3-specific antagonist to examine fibrillin-1 assembly. Western blotting and immunofluorescence analysis showed that treatment with the integrin αvβ3 antagonist at 5 μM clearly abolished fibrillin-1 deposition. These results provide for the first time evidence that integrin αvβ3 regulates extracellular assembly of fibrillin-1, thereby modulating cell-mediated homeostasis of microfibrils. 相似文献
6.
Force-bearing tissues such as blood vessels, lungs, and ligaments depend on the properties of elasticity and flexibility. The 10 to 12 nm diameter fibrillin microfibrils play vital roles in maintaining the structural integrity of these highly dynamic tissues and in regulating extracellular growth factors. In humans, defective microfibril function results in several diseases affecting the skin, cardiovascular, skeletal, and ocular systems. Despite the discovery of fibrillin-1 having occurred more than two decades ago, the structure and organization of fibrillin monomers within the microfibrils are still controversial. Recent structural data have revealed strategies by which fibrillin is able to maintain its architecture in dynamic tissues without compromising its ability to?interact with itself and other cell matrix components. This review summarizes our current knowledge of microfibril structure, from individual fibrillin domains and the calcium-dependent tuning of pairwise interdomain interactions to microfibril dynamics, and how this relates to microfibril function in health and disease. 相似文献
7.
Summary The marine red algaErythrocladia subintegra synthesizes cellulose microfibrils as determined by CBH I-gold labelling, X-ray and electron diffraction analyses. The cellulose microfibrils are quite thin, ribbon-like structures, 1–1.5 nm in thickness (constant), and 10–33 nm in width (variable). Several laterally associated minicrystal components contribute to the variation in microfibrillar width. Electron diffraction analysis suggested a uniplanar orientation of the microfibrils with their (101) lattice planes parallel to the plasma membrane surface of the cell. The linear particle arrays bound in the plasma membrane and associated with microfibril impressions recently demonstrated inErythrocladia have been shown in this study to be the cellulose-synthesizing terminal complexes (TCs). The TCs appear to be organized by a repetition of transverse rows consisting of four TC subunits, rather than by four rows of longitudinallyarranged TC subunits. The number of transverse rows varied between 8–26, corresponding with variation in the length of the TCs and the width of the microfibrils. The spacings between the neighboring transverse rows are almost constant being 10.5–11.5 nm. Based on the knowledge thatAcetobacter, Vaucheria, andErythrocladia synthesize similar thin, ribbon-like cellulose microfibrils, the structural characteristics common to the organization of distinctive TCs occurring in these three organisms has been discussed, so that the mode of cellulose microfibril assembly patterns may be deciphered. 相似文献
8.
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology. 相似文献
9.
Cain SA Baldock C Gallagher J Morgan A Bax DV Weiss AS Shuttleworth CA Kielty CM 《The Journal of biological chemistry》2005,280(34):30526-30537
Fibrillin-1 assembly into microfibrils and elastic fiber formation involves interactions with glycosaminoglycans. We have used BIAcore technology to investigate fibrillin-1 interactions with heparin and with heparin saccharides that are analogous to S-domains of heparan sulfate. We have identified four high affinity heparin-binding sites on fibrillin-1, localized three of these sites, and defined their binding kinetics. Heparin binding to the fibrillin-1 N terminus has particularly rapid kinetics. Hyaluronan and chondroitin sulfate did not interact significantly with fibrillin-1. Heparin saccharides with more than 12 monosaccharide units bound strongly to all four fibrillin-1 sites. Heparin did not inhibit fibrillin-1 N- and C-terminal interactions or RGD-dependent cell attachment, but heparin and MAGP-1 competed for binding to the fibrillin-1 N terminus, and heparin and tropoelastin competed for binding to a central fibrillin-1 sequence. By regulating these key interactions, heparin can profoundly influence microfibril and elastic fiber assembly. 相似文献
10.
11.
《Matrix biology》2015
The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin-type 1 motifs) protein superfamily includes 19 secreted metalloproteases and 7 secreted ADAMTS-like (ADAMTSL) glycoproteins. The possibility of functional linkage between ADAMTS proteins and fibrillin microfibrils was first revealed by a human genetic consilience, in which mutations in ADAMTS10, ADAMTS17, ADAMTSL2 and ADAMTSL4 were found to phenocopy rare genetic disorders caused by mutations affecting fibrillin-1 (FBN1), the major microfibril component in adults. The manifestations of these ADAMTS gene disorders in humans and animals suggested that they participated in the structural and regulatory roles of microfibrils. Whereas two such disorders, Weill–Marchesani syndrome 1 and Weill–Marchesani-like syndrome involve proteases (ADAMTS10 and ADAMTS17, respectively), geleophysic dysplasia and isolated ectopia lentis in humans involve ADAMTSL2 and ADAMTSL4, respectively, which are not proteases. In addition to broadly similar dysmorphology, individuals affected by Weill–Marchesani syndrome 1, Weill–Marchesani-like syndrome or geleophysic dysplasia each show characteristic anomalies suggesting molecule-, tissue-, or context-specific functions for the respective ADAMTS proteins. Ectopia lentis occurs in each of these conditions except geleophysic dysplasia, and is due to a defect in the ciliary zonule, which is predominantly composed of FBN1 microfibrils. Together, this strongly suggests that ADAMTS proteins are involved either in microfibril assembly, stability, and anchorage, or the formation of function-specific supramolecular networks having microfibrils as their foundation. Here, the genetics and molecular biology of this subset of ADAMTS proteins is discussed from the perspective of how they might contribute to fully functional or function-specific microfibrils. 相似文献
12.
Heart valve function: a biomechanical perspective 总被引:3,自引:0,他引:3
Sacks MS Yoganathan AP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2007,362(1484):1369-1391
13.
Complexes of chemoreceptors in the bacterial cytoplasmic membrane allow for the sensing of ligands with remarkable sensitivity. Despite the excellent characterization of the chemotaxis signaling network, very little is known about what controls receptor complex size. Here we use in vitro signaling data to model the distribution of complex sizes. In particular, we model Tar receptors in membranes as an ensemble of different sized oligomer complexes, i.e., receptor dimers, dimers of dimers, and trimers of dimers, where the relative free energies, including receptor modification, ligand binding, and interaction with the kinase CheA determine the size distribution. Our model compares favorably with a variety of signaling data, including dose-response curves of receptor activity and the dependence of activity on receptor density in the membrane. We propose that the kinetics of complex assembly can be measured in vitro from the temporal response to a perturbation of the complex free energies, e.g., by addition of ligand. 相似文献
14.
Dick J. Van der Horst Sigrid D. Roosendaal Kees W. Rodenburg 《Molecular and cellular biochemistry》2009,326(1-2):105-119
Circulatory transport of neutral lipids (fat) in animals relies on members of the large lipid transfer protein (LLTP) superfamily, including mammalian apolipoprotein B (apoB) and insect apolipophorin II/I (apoLp-II/I). Latter proteins, which constitute the structural basis for the assembly of various lipoproteins, acquire lipids through microsomal triglyceride transfer protein (MTP)—another LLTP family member—and bind them by means of amphipathic structures. Comparative research reveals that LLTPs have evolved from the earliest animals and additionally highlights the structural and functional adaptations in these lipid carriers. For instance, in contrast to mammalian apoB, the insect apoB homologue, apoLp-II/I, is post-translationally cleaved by a furin, resulting in their appearance of two non-exchangeable apolipoproteins in the insect low-density lipoprotein (LDL) homologue, high-density lipophorin (HDLp). An important difference between mammalian and insect lipoproteins relates to the mechanism of lipid delivery. Whereas in mammals, endocytic uptake of lipoprotein particles, mediated via members of the LDL receptor (LDLR) family, results in their degradation in lysosomes, the insect HDLp was shown to act as a reusable lipid shuttle which is capable of reloading lipid. Although the recent identification of a lipophorin receptor (LpR), a homologue of LDLR, reveals that endocytic uptake of HDLp may constitute an additional mechanism of lipid delivery, the endocytosed lipoprotein appears to be recycled in a transferrin-like manner. Binding studies indicate that the HDLp–LpR complex, in contrast to the LDL–LDLR complex, is resistant to dissociation at endosomal pH as well as by treatment with EDTA mimicking the drop in Ca2+ concentration in the endosome. This remarkable stability of the ligand–receptor complex may provide a crucial key to the recycling mechanism. Based on the binding and dissociation capacities of mutant and hybrid receptors, the specific binding interaction of the ligand-binding domain of the receptor with HDLp was characterized. These structural similarities and functional adaptations of the lipid transport systems operative in mammals and insects are discussed from an evolutionary perspective. 相似文献
15.
Integrins link the extracellular matrix to the actin cytoskeleton by triggering the assembly of different types of adhesion complex. One of their major components is filamentous actin (F-actin), and they are important signaling hubs for actin cytoskeleton reorganization in response to chemical and mechanical signals. In an exciting publication, Butler et al. have demonstrated for the first time that purified adhesion complexes possess the entire machinery necessary to actively assemble F-actin as a function of integrin activity and clustering. 相似文献
16.
The effectiveness of the cupping technique, a treatment modality in Traditional Chinese Medicine, in stimulating acupuncture points for pain relief was examined in this paper from a biomechanical perspective. Parametric studies including the effects of vacuum pressure, loading rate, friction coefficient at the cup-skin interface, and size and shape of the cup were carried out using a model based on the finite-element method. The anatomical structures of skin, fat, and muscle were modelled. All the soft-tissue layers were assumed to be nonlinearly elastic and viscoelastic. The rim of the cup was also modelled to study the interaction between cup and skin; the cup rim was assumed to be rigid. The simulation results showed that the stresses in the soft tissue were increased for increasing applied vacuum pressures and that the effects of cupping were mostly limited to the region enclosed by the cup. The simulations also indicated that the magnitude of the applied vacuum may have had direct implications for the severity of bruising of the skin following cupping treatment. Most significantly, the simulation results contradicted the established practice of cup size selection according to the depth of the disorder. Experimental verification of the proposed multi-layered finite-element model is presented. The nature of the bruising inherent to the cupping treatment is also explained by the proposed model. 相似文献
17.
18.
The generation and refinement of dendrites is essential for normal brain development and function. However, the molecular mechanisms that govern dendritic morphogenesis are poorly understood. Recent studies from the Crabtree laboratory have uncovered a requirement for the neuron-specific chromatin-remodeling enzyme nBAF in dendritic growth and branching in response to neuronal activity. These findings highlight the significance of epigenetic mechanisms in activity-dependent dendritic morphogenesis, with important implications in brain development and plasticity. 相似文献
19.
Summary The plasmalemma of Oocystis apiculata, W. West when freezeetched has been shown to bear granules of several sizes. At the earliest stage of development the outer face of the plasmalemma of the naked autospore has small (8.5 nm diameter) granules aligned in rows, in pairs. These rows are stacked together forming extensive granule-bands over the plasmalemma surface. The orientation of these granule-bands corresponds exactly to one of the major microfibril directions. Occasionally, the bands are reduced to patches, some of which are at right angles to each other. Banding of granules on the inner plasmalemma face of naked autospores is also seen. During development the plasmalemma is seen to change so that in the final stages it bears reticulate invaginations, the granule bands occurring within them. The significance of the granulebands in terms of cellulose microfibril biosynthesis is discussed. 相似文献
20.
R. Kaldenhoff 《Plant Growth Regulation》1990,9(1):84-85