首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasion of North American forests by exotic earthworms is producing profound ecosystem changes, such as alterations in soil nutrient cycling, and redistribution and loss of soil organic matter. However, the present and future extent of these invasions is difficult to evaluate without a better understanding of the factors that control the distribution and abundance of earthworms in previously non-invaded habitats. In this study, the species composition and short-term dynamics of three exotic earthworm invasion fronts were studied at a northern hardwood forest in south-central New York State (USA). Belt transects were established at each of the three locations to sample from earthworm-invaded areas through transition zones and into invasion front areas. Lumbricus rubellus, L. terrestrisandOctolasion tyrtaeum were the most common species, but their distribution was not homogeneous along the transects. Whereas, L. rubellus was the only species with relatively high adult densities at transition zones and invasion fronts, L. terrestris and O. tyrtaeum occurred mostly in the heavily earthworm-invaded areas and were rare at the invasion fronts. The density of earthworms along the transects decreased by 60–87 from June 2001 to October 2002 and then recovered in 2003 to values similar to those of 2001. This decrease was apparently caused by reduced recruitment of immature earthworms, probably related to the severe drought periods that the study area experienced in 2001 and 2002. Our data suggest that climate and topography, through their effects on soil moisture patterns, can be critical factors controlling the distribution and spread of exotic earthworms in previously non-invaded habitats.  相似文献   

2.
The invasion by alien macrophytes in aquatic ecosystems may produce a strong alteration of the native aquatic vegetation leading to heavy impacts for both plant and faunal native diversity. Myriophyllum aquaticum is an aquatic plant native of Southern America, invasive in several part of the world. We studied the effects of M. aquaticum invasion on plant and macro-arthropod communities in the canals around a protected wetland in the Mediterranean basin. We sampled plant and macro-arthropod communities in 10 transects in invaded and non-invaded tracts of the canals. We assessed the differences in plant and macro-arthropod species richness, diversity, taxonomic diversity and species composition between invaded and non-invaded habitats by means of univariate and multivariate analyses. Our study shows a significant loss of plant diversity between non-invaded to invaded sites, leading to communities numerically and taxonomically impoverished and highly divergent in the species composition. We also detected significant differences in arthropod species composition between invaded and non-invaded transects. Some taxa such as mosquitoes and malacostraca were more frequent in the M. aquaticum-dominated stands. Furthermore, the study shows a positive relation between invaded habitats and juvenile individuals of the invasive alien crayfish Procambarus clarkii.  相似文献   

3.
Parthenium hysterophorus (Asteraceae) is a noxious plant that is considered one of the most invasive species in the world. We studied changes in the composition of plant species and soil properties related to the invasion of P. hysterophorus in three grassland communities of central Nepal. We collected vegetation and soil data along transects that were established in densely invaded to non-invaded areas within homogenous grassland stands. We found significant differences between invaded, transitional and non-invaded plots in species composition and soil properties. There were fewer species in non-invaded than transitional and invaded plots. By P. hysterophorus invasion both native and non-native species were supported or replaced, respectively. The concentrations of soil nitrogen and organic matter were significantly higher in transitional and invaded plots than in non-invaded plots. Soil pH, phosphorus and potassium were highest in the invaded plots, lowest in the non-invaded and intermediate in the transitional plots. Due to changes in above-ground vegetation and below-ground soil nutrient contents, P. hysterophorus invasion is likely to have an overall negative effect on the functioning of the entire ecosystem. Therefore, management of noxious P. hysterophorus is necessary to prevent future problems.  相似文献   

4.
The study evaluated different macroalgal invasions in the main Mediterranean coastal habitats on hard bottom. Biodiversity, species composition and structure of macroalgal assemblages were compared among non-invaded areas and areas invaded by the Chlorophyta Caulerpa racemosa var. cylindracea and by the turf-forming Rhodophyta Womersleyella setacea in three different habitats: shallow rocky bottom, deep rocky bottom and dead matte of the seagrass Posidonia oceanica. Results showed that alien macroalgae constituted a relevant component of benthic assemblages in invaded areas of the Mediterranean Sea. Assemblages invaded by Womersleyella setacea and Caulerpa racemosa showed lower values of diversity and large differences in the structure and species composition related to non-nvaded assemblages. The species that mostly suffered from invasion were erect species reproducing sexually; moreover, the dominance of W. setacea led to low abundance of native filamentous algae, while C. racemosa colonization seemed particularly threatening for encrusting algae. All the studied habitats appeared highly invasible by alien macroalgae, even if W. setacea appeared more invasive in deeper habitats, while colonization of C. racemosa seemed more serious in shallower habitats; the dead matte of P. oceanica represented a suitable substrate for the spread of both species. Differences among assemblages in different habitats were reduced in invaded areas.  相似文献   

5.
ABSTRACT

Background: Invasive plants can negatively impact native communities, but the majority of the effects of these invasions have been demonstrated only for temperate ecosystems. Tropical ecosystems, including the Cerrado, a biodiversity hotspot, are known to be invaded by numerous non-native species, but studies of their impacts are largely lacking.

Aims: Our research aimed at quantifying how Pinus spp. presence and density affected Cerrado plant communities.

Methods: We sampled areas invaded and non-invaded by Pinus spp. to determine if pine invasion affected native tree richness, diversity, evenness, and density. We also evaluated if community composition differed between invaded and non-invaded sites.

Results: We found invaded plots had lower native tree densities than non-invaded plots and that Pinus spp. invasions changed native tree communities by reducing native species abundances.

Conclusion: Invasive pines had negative impacts on the native Cerrado tree community by reducing native plant density and changing species abundances. Reduced density and abundance at early invasion stages can result in reduction in biodiversity in the long term.  相似文献   

6.
Ortega YK  McKelvey KS  Six DL 《Oecologia》2006,149(2):340-351
Although exotic plant invasions threaten natural systems worldwide, we know little about the specific ecological impacts of invaders, including the magnitude of effects and underlying mechanisms. Exotic plants are likely to impact higher trophic levels when they overrun native plant communities, affecting habitat quality for breeding songbirds by altering food availability and/or nest predation levels. We studied chipping sparrows (Spizella passerina) breeding in savannas that were either dominated by native vegetation or invaded by spotted knapweed (Centaurea maculosa), an exotic forb that substantially reduces diversity and abundance of native herbaceous plant species. Chipping sparrows primarily nest in trees but forage on the ground, consuming seeds and arthropods. We found that predation rates did not differ between nests at knapweed and native sites. However, initiation of first nests was delayed at knapweed versus native sites, an effect frequently associated with low food availability. Our seasonal fecundity model indicated that breeding delays could translate to diminished fecundity, including dramatic declines in the incidence of double brooding. Site fidelity of breeding adults was also substantially reduced in knapweed compared to native habitats, as measured by return rates and shifts in territory locations between years. Declines in reproductive success and site fidelity were greater for yearling versus older birds, and knapweed invasion appeared to exacerbate differences between age classes. In addition, grasshoppers, which represent an important prey resource, were substantially reduced in knapweed versus native habitats. Our results strongly suggest that knapweed invasion can impact chipping sparrow populations by reducing food availability. Food chain effects may be an important mechanism by which strong plant invaders impact songbirds and other consumers.  相似文献   

7.
Invasive plants are recognised as a major threat to biodiversity. Although they are well-established in natural areas, the supposed negative impacts of invasive plants upon communities and ecosystems have so far been poorly investigated in urban areas, where invasions are a main issue for ecologists and for urban planners and managers. We propose to assess the effects of an invasive species along an invasion gradient in a typical urban habitat. We focused on the Japanese knotweed (Reynoutria japonica Houtt.), a widespread invasive species in Europe and North America. We considered eight urban wastelands invaded by this species in the heart of the Greater Paris Area, France. On each site, we ran four transects from the centre of the Japanese knotweed patch towards the uninvaded peripheral vegetation. We recorded the flora using the line intercept method, and several soil parameters (thickness of A horizon, abundance of earthworm casts, topsoil Munsell value, pH) every metre along each transect. The A horizon was thicker and the topsoil darker under R. japonica canopy. Thus, this invasive plant species seemed to influence soil organic matter pool. However, our results also steadily showed that R. japonica locally excluded and/or severely reduced the cover of many plant species through competition. Our study clarified the local effects of R. japonica: an influence on the soil organic matter, and a severe negative impact on wasteland plant communities. We suggest implications in both conservation and restoration ecology.  相似文献   

8.
黄顶菊对入侵地群落动态及植物生长生理特征的影响   总被引:1,自引:0,他引:1  
为明确黄顶菊对入侵地植物群落和土著植物生理生长的影响机制,采用同质园试验对入侵和非入侵土壤的植物群落开展了整个生育期动态监测,并分析了黄顶菊入侵对狗尾草、羽叶鬼针草、灰绿藜、地肤4种土著植物生长和生理特征的影响规律。结果表明:黄顶菊入侵土壤植物群落多样性指数低于非入侵地,且有季节性差异,随生育期的推进差异逐渐减小;黄顶菊对本地植物的生长指标有显著影响(P0.05),随时间变化显著,但存在物种差异;4种植物的净光合速率(Pn)、气孔导度(Cd)、蒸腾速率(Tr)在非入侵土壤生长显著高于入侵地土壤(P0.05);而4种植物在入侵土壤生长的比叶面积(SLA)、比根长(SRL)、比根面积(SRA)显著高于本地土壤(P0.05)。综上,黄顶菊入侵抑制了本地植物的光合效率,减少了生物量的积累,导致本地植物群落的生物多样性水平降低,但表现出季节差异;不同物种对黄顶菊入侵胁迫的响应表现种间特异性,为理解入侵种对群落结构影响和实现入侵生境恢复提供了理论依据。  相似文献   

9.
In water-limited ecosystems, where potential evapotranspiration exceeds precipitation, it is often assumed that plant invasions will not increase total ecosystem water use, because all available water is evaporated or transpired regardless of vegetation type. However, invasion by exotic species, with high water use rates, may potentially alter ecosystem water balance by reducing water available to native species, which may in turn impact carbon assimilation and productivity of co-occurring species. Here, we document the impact of invasion by an understory exotic woody species (Acacia longifolia) in a semi-arid Mediterranean dune pine forest. To quantify the effects of this understory leguminous tree on the water use and carbon fixation rates of Pinus pinaster we compare an invaded and a non-invaded stand. A. longifolia significantly altered forest structure by increasing plant density and leaf area index in the mid-stratum of the invaded forest. A. longifolia contributed significantly to transpiration in the invaded forest (up to 42%) resulting in a slight increase in stand transpiration in the invaded relative to non-invaded forest. More importantly, both water use and carbon assimilation rates of P. pinaster were significantly reduced in the invaded relative to non-invaded stand. Therefore, this study shows that exotic plant invasions can have significant impacts on hydrological and carbon cycling even in water-limited semi-arid ecosystems through a repartitioning of water resources between the native and the invasive species.  相似文献   

10.
The North American historic phytogeographic distribution of mugwort (Artemisia vulgaris) and Japanese knotweed (Polygonum cuspidatum), two invasive perennial species introduced from Eurasia and East Asia respectively, was recreated using herbarium records. The putative initial introduction of these two species differs by c.a. 400 years, but their patterns of geographic distribution, introduction pathways, and local dispersal pathways are similar. Both species showed the expected logistic growth relationship between range size and the time following introduction, with lag phases of nearly 400 and 50 years for mugwort and Japanese knotweed respectively. The intrinsic growth rate was greater in Japanese knotweed than mugwort for the US, Canada, and North America. Both species were frequently found along waterway, railroad, and road rights-of-way. Introduction pathways differed, with Japanese knotweed commonly labeled as an ornamental escape (151 collections), while mugwort was commonly cited as an inadvertent component of ship ballast (20 collections). These potential founding populations were located across the final distribution for both species, suggesting anthropogenic large-scale dispersal across North America with local secondary spread. Range expansion appears to be active for both species in the US while nearing the carrying capacity in Canada. Managers of mugwort and Japanese knotweed can make use of this information on their range expansion dynamics and dispersal pathways by reducing anthropogenic dispersal and focusing resources on satellite populations and invasion corridors.  相似文献   

11.
The historical spatio-temporal distribution of invasive species is rarely documented, hampering efforts to understand invasion dynamics, especially at regional scales. Reconstructing historical invasions through use of herbarium records combined with spatial trend analysis and modeling can elucidate spreading patterns and identify susceptible habitats before invasion occurs. Two perennial species were chosen to contrast historic and potential phytogeographies: Japanese knotweed (Polygonum cuspidatum), introduced intentionally across the US; and mugwort (Artemisia vulgaris), introduced largely accidentally to coastal areas. Spatial analysis revealed that early in the invasion, both species have a stochastic distribution across the contiguous US, but east of the 90(th) meridian, which approximates the Mississippi River, quickly spread to adjacent counties in subsequent decades. In contrast, in locations west of the 90(th) meridian, many populations never spread outside the founding county, probably a result of encountering unfavorable environmental conditions. Regression analysis using variables categorized as environmental or anthropogenic accounted for 24% (Japanese knotweed) and 30% (mugwort) of the variation in the current distribution of each species. Results show very few counties with high habitat suitability (>/=80%) remain un-invaded (5 for Japanese knotweed and 6 for mugwort), suggesting these perennials are reaching the limits of large-scale expansion. Despite differences in initial introduction loci and pathways, Japanese knotweed and mugwort demonstrate similar historic patterns of spread and show declining rates of regional expansion. Invasion mitigation efforts should be concentrated on areas identified as highly susceptible that border invaded regions, as both species demonstrate secondary expansion from introduction loci.  相似文献   

12.
为有效防控外来入侵植物,在广西陆川县人工林区进行植被嵌套样方调查,分析群落物种组成与植被结构和环境因子之间的相关性。Mantel检验表明样方物种组成与样方植被结构的相关性(r=0.208, P=0.002)高于其与环境因子相关性(r=0.084, P=0.051)。MRPP分析表明,有入侵植物阔叶丰花草(Spermacoce alata)、假臭草(Praxelis clematidea)和胜红蓟(Ageratum conyzoides)样方的植被结构与无这3种植物样方的有极显著不同(P 0.01),而有无薇甘菊(Mikainamicrantha)样方的植被结构相似。t检验表明林冠盖度(3.0 m)与这4种植物入侵均无显著相关性(P0.073)。通过增加垂直高度1.5 m以下的植被密度,可以减少阔叶丰花草、假臭草和胜红蓟的入侵,但对抑制薇甘菊入侵无效。因此,植被结构作为过滤器,可能主要作用于植物的种子产生时间、萌发周期和生长习性;以种子方式繁殖的入侵植物能否定植相对更依赖干扰、暴露的裸地;兼具无性和有性繁殖且能攀援和匍匐生长使得薇甘菊能够在不同植被结构的群落中相对随机地定植。  相似文献   

13.
Alien species that are desirable and commercially important in parts of the landscape, but damaging invaders in other parts, present a special challenge for managers, planners, and policy-makers. Objective methods are needed for identifying areas where control measures should be focussed. We analysed the distribution of forestry plantations and invasive (self-sown) stands of Acacia mearnsii and Pinus spp. in South Africa; these two taxa account for 60% of the area under commercial plantations and 54% of the area invaded by alien trees and shrubs. The distribution of commercial forestry plantations and invasive stands of these taxa were mapped and the data was digitised and stored as Geographic Information System (GIS) (Arc/Info) layers. A series of environmental parameters were derived from GIS layers of climate, topography, geology, land use, and natural vegetation. The current distribution of the two taxa was subdivided into three groups according to the degree of invasion, planting history and the precision of the data collection. We used regression-tree analysis to relate, for each taxon, the distribution of invasive stands with environmental variables, and to derive habitat suitability maps for future invasion. The current distribution of invasive stands in South Africa was largely influenced by climatic factors. At a national scale, the distribution of large commercial plantations was a poor predictor of areas invaded by both taxa. Using environmental factors identified by the regression trees, we found that 6.6% and 9.8% of natural habitats currently not invaded and untransformed by urbanisation or agriculture are suitable for invasion by Pinus spp. and A. mearnsii, respectively. We then derived guidelines for policy on alien plant management based on vegetation type, degree of transformation, extent of invasion, and the risk of future alien spread. These factors were used to identify demarcated areas where these alien species can be grown with little risk of invasions, and areas where special measures are needed to manage spread from plantations.  相似文献   

14.
Blank  R. R. 《Plant and Soil》2002,239(1):155-163
Wetlands and riparian habitats in the western United States are being invaded by the exotic crucifer Lepidium latifolium (perennial pepperweed, tall whitetop). It was hypothesized that L. latifolium was an effective competitor due to its ability to make available and take up more nitrogen than vegetation it is replacing. The hypothesis was tested by comparing amidohydrolase activities, available soil N, 30 day aerobic N-mineralization rates, and plant uptake of N in paired L. latifolium invaded and non-invaded plots occupied by Elytrigia elongata (tall wheatgrass). Attributes were measured by date (June 1998, September 1998, April 1999, and May 2000) and by soil depth (0–15, 15–30, 30–50, and 50–86 cm). Lepidium latifolium invaded sites had significantly (p 0.05) greater urease, amidase, glutaminase, and asparaginase activities than sites occupied by E. elongata for most dates and soil depths. In addition, despite far greater uptake of N per unit area, L. latifolium sites still had significantly greater available N and N-mineralization potentials than E. elongata for most dates and depths. In general, enzyme activities significantly correlated with available soil N, with a stronger relationship for sites invaded by L. latifolium. There were few significant linear correlations of enzyme activities with net N mineralization potentials for L. latifolium sites, but many for sites occupied by E. elongata. These data support the working hypothesis.  相似文献   

15.
In Europe, coastal sandy habitats are considered highly endangered among those included in the EC Directive 92/43/EEC (Habitats Directive). Among the different threats which affect coastal communities, the spread of alien plants has been claimed to induce changes in community diversity and structure. We therefore set out to analyse diversity patterns of native and focal species (diagnostic and characteristic of coastal dune habitats of European conservation interest) in sandy coastal habitats invaded by Carpobrotus aff. acinaciformis, a widespread alien plant. Focal species are a major conservation target for the Habitats Directive and their decline should be considered a serious threat for the whole habitat. The study was performed in the Central Western coast of Italy. We randomly sampled the vegetation of the holocenic dune by 2 m × 2 m plots. First we split the collected data in two sets: invaded and non-invaded. We compared overall native and focal species richness patterns of the two sets by rarefaction curves. Then, in order to describe the singular aspects of species diversity (e.g. richness, Shannon index, Simpson index, Berger–Parker index), we also compared Rènyi's diversity profiles and we tested the significance of the differences between invaded and non invaded sets using a bootstrap procedure. Rarefaction curves of the non-invaded set rise quickly and reach higher accumulation values than the invaded set, but differences between the two curves were not significant. With respect to Rènyi's profiles, the profile for the invaded dataset was always below the non-invaded one, but differences in diversity were significant only when specifically considering the focal species (Shannon, Simpson and Berger–Parker indices). In the analysed case, the invasion is significantly associated with changes in focal species diversity, instead those differences are not evident on the all native species pool. In the case of recent invasions, a consistent decline on focal species diversity may represent an early alarm sign of diversity loss and may help define specific conservation actions to prevent the decrease of overall diversity.  相似文献   

16.
Ants are dominant members of many terrestrial ecosystems and are regarded as indicators of environmental changes. However, little is known about the effects of invasive alien plants on ant populations, particularly as regards the density, spatial distribution and size of ant colonies, as well as their foraging behaviour. We addressed these questions in a study of grassland ant communities on five grasslands invaded by alien goldenrods (Solidago sp.) and on five non-invaded grasslands without this plant. In each grassland, seven 100 m2 plots were selected and the ant colonies counted. Ant species richness and colony density was lower in the plots on the invaded grasslands. Moreover, both of these traits were higher in the plots near the grassland edge and with a higher number of plant species in the grasslands invaded by goldenrods but not in the non-invaded ones. On average, ant colony size was lower on the invaded grasslands than the non-invaded ones. Also, ant workers travelled for longer distances to collect food items in the invaded areas than they did in the non-invaded ones, even after the experimental removal of some ant colonies in order to exclude the effect of higher colony density in the latter. Our results indicate that invasive alien goldenrods have a profound negative effect on grassland ant communities which may lead to a cascade effect on the whole grassland ecosystem through modification of the interactions among species. The invasion diminishes a major index of the fitness of ants, which is a colony’s size, and probably leads to increased foraging effort of workers. This, in turn, may have important consequences for the division of labour and reproductive strategies within ant colonies.  相似文献   

17.
Plant communities in the continental tropics have suffered less from exotic plant invasions than their oceanic island counterparts. Most studies have focused on near-pristine communities. By contrast, we examine the resistance of semi-natural continental plant communities in Hong Kong, which have been suffering from chronic and massive human impacts. We compiled a list of all naturalized non-native species recorded in Hong Kong and then sampled the plant communities for exotic species along roadsides, a stream through semi-natural vegetation, and in semi-natural vegetation away from both roads and streams on Tai Mo Shan, Hong Kong’s highest peak (957 m). Similar surveys were repeated in other areas of Hong Kong. More than 162 naturalized exotic plant species have been recorded in Hong Kong. On Tai Mo Shan, 29 exotic species were recorded in roadside vegetation, with the diversity but not percentage cover declining significantly with altitude. Fifteen exotic species were found along the stream, including two not found along the roadside. Only six exotic species were found away from roads and streams, all in unshaded areas disturbed by feral cattle. In all surveys, no exotics were found in closed woody vegetation or in open areas without feral cattle, except for one species. The shade-tolerant tropical Asian tree Syzygium jambos was found invading along some streamsides without anthropogenic disturbance. Despite centuries of massive human impacts, exotic plant invasions in Hong Kong are still largely confined to habitats that suffer from chronic human disturbance. Feral cattle promote invasion where people are absent, but this problem still seems potentially reversible. Only Syzygium jambos is of possible current conservation concern.  相似文献   

18.
With the widespread introduction and invasion of exotic plants there is a need for studies that quantify alterations of basic ecosystem structure and function. Ecosystem invasion by Melaleuca quinquenervia significantly altered both above- and belowground ecosystem components in this study. We measured the quantity and nutrient concentration of the litterfall, litter layer, and soil; microbial biomass pools; and rates of potentially mineralizable nitrogen and soil oxygen demand. Annual litterfall was 4.9 times higher in the non-invaded sites and contained 1.9 times more phosphorus than invaded sites. Non-invaded plots contained a larger litter layer compared to invaded plots: 2.4 ± 1.2 kg m−2 and 0.62 ± 0.3 kg m−2 , respectively. Lower nutrient concentration and quantity of the litter layer in the invaded plots led to changes in the aboveground storage of nutrients. In the invaded plots there was four times less carbon, seven times less nitrogen, and ten times less phosphorus stored in the organic litter layer compared to the non-invaded plots. Microbial biomass nutrient pools were consistently lower at both the 0–5 cm and 5–15 cm depth in the invaded soils compared to non-invaded soils, indicating a plant mediated change. Although M. quinquenervia altered microbial community structure, microbial activities were not different between invaded and non-invaded plots at either depth as measured by rates of soil oxygen demand and potentially mineralizable nitrogen. These changes may affect both native plant growth and water quality, and may act to promote and maintain site dominance by M. quinquenervia.  相似文献   

19.
Kilimanjaro, a world heritage site and an icon of global change, not only suffers from climatic alterations but also is undergoing a drastic socio-economic upheaval. A strong increase of tourism enhances the risk of introducing alien plant species in particular in the upper zones of Kilimanjaro. One such species is Poa annua L., a cosmopolitan weed of European origin on roadsides and pastures. The aim of this study is to document its distribution, the speed of its propagation and risks for the indigenous vegetation of Kilimanjaro, and to compare the findings with other introduced species on this mountain. Based on a complete survey of the vegetation of Kilimanjaro with about 1,500 vegetation plots, plant communities invaded by Poa annua are determined. As with most of the other neophytes on Kilimanjaro, Poa annua invades only anthropogenic vegetation but not undisturbed natural vegetation. Similar to the situation in middle Europe, this neophyte is on Kilimanjaro a constituent of the vegetation of trampled ground, occurring between about 1,600 and 4,000 m asl along climbing routes or their vicinity. On a newly opened climbing route a rapid invasion (5.6 km in 3 months) was observed, which makes it likely that Poa annua spread on Kilimanjaro during the last 30 years in parallel to the increase of the climbing tourism. Although Poa annua is still in the stage of propagation, an invasion of natural vegetation types seems to be unlikely.  相似文献   

20.
Amphibian populations have been undergoing declines on a global scale. Among the many threats to these populations are emergent infectious diseases (EIDs). The Ranavirus in particular has been found within many declining amphibian populations. Although non-lethal sampling methods exist for some amphibian groups, such as salamanders, the anurans are traditionally tested using a lethal method. By comparing traditional liver samples and a new non-lethal method of toe clipping we prove that the Ranavirus can also be determined in frogs using a non-lethal method, a much needed tool in threatened populations. This method will allow for ranaviral detection without further impacting declining populations, and can further be used for other research questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号