首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The virA promoter is a host-range determinant in Agrobacterium tumefaciens   总被引:1,自引:0,他引:1  
The limited host range (LHR) Agrobacterium tumefaciens strain Ag162 is an isolate with a narrow host range. Introduction of the wide host range (WHR) virA gene is essential for extending the host range to Kalanchoë daigremontiana. In this report we show that the region upstream of the ATG start codon is responsible for the LHR phenomenon and that this is probably due to the non-inducibility of the LHR virA promoter. By comparing the characteristics of the LHR and WHR VirA receptor proteins, it was found that the LHR VirA protein is able to activate the WHR VirG protein in the presence of acetosyringone and that this acetosyringone-dependent vir-induction is enhanced by the presence of d -glucose, as in the case of WHR VirA proteins. These results indicate that the domains, acting as receptors for sugars and phenolic signals, must be conserved between the LHR and WHR VirA receptor proteins.  相似文献   

2.
The virulence loci play an essential role in tumor formation by Agrobacterium tumefaciens. Induction of vir gene expression by plant signal molecules is solely dependent on the virulence loci virA and virG. This study focused on the virA locus of the octopine type Ti plasmid pTi15955. The nucleic acid sequence of a 5.7-kilobase fragment encompassing virA was determined. Genetic analysis of this region revealed that virA contains one open reading frame coding for a protein of 91 639 daltons. Immunodetection with antibodies raised against a 35-kDa VirA fusion protein produced in E. coli identified the VirA product in wild-type Agrobacterium cells. Moreover, it is shown that the VirA protein is located in the cytoplasmic membrane fraction of Agrobacterium. These data confirm the proposed regulatory function of VirA whereby VirA acts as a membrane sensor protein to identify plant signal molecules in the environment. The proposed sensory function of VirA strikingly resembles the function of the chemotaxis receptor proteins of E. coli.  相似文献   

3.
The virulence loci play an essential role in tumor formation by Agrobacterium tumefaciens. Induction of vir gene expression by plant signal molecules is solely dependent on the virulence loci virA and virG. This study focused on the virA locus of the octopine type Ti plasmid pTi15955. The nucleic acid sequence of a 5.7-kilobase fragment encompassing virA was determined. Genetic analysis of this region revealed that virA contains one open reading frame coding for a protein of 91 639 daltons. Immunodetection with antibodies raised against a 35-kDa VirA fusion protein produced in E. coli identified by the VirA product in wild-type Agrobacterium cells. Moreover, it is shown that the VirA protein is located in the cytoplasmic membrane fraction of Agrobacterium. These data confirm the proposed regulatory function of VirA whereby VirA acts as a membrane sensor protein to identify plant signal molecules in the environment. The proposed sensory function of VirA strikingly resembles the function of the chemotaxis receptor proteins of E. coli.  相似文献   

4.
The membrane-bound sensor protein kinase VirA of Agrobacterium tumefaciens detects plant phenolic substances, which induce expression of vir genes that are essential for the formation of the crown gall tumor. VirA also responds to specific monosaccharides, which enhance vir expression. These sugars are sensed by the periplasmic domain of VirA that includes the region homologous to the chemoreceptor Trg, and the phenolics are thought to be detected by a part of the cytoplasmic linker domain, while the second transmembrane domain (TM2) is reported to be nonessential. To define regions of VirA that are essential for signal sensing, we introduced base-substitution and deletion mutations into coding regions that are conserved among the respective domains of VirA proteins from various Agrobacterium strains, and examined the effects of these mutations on vir induction and tumorigenicity. The results show that the Trg-homologous region in the periplasmic domain is not essential for the enhancement of vir gene expression by sugars. Most mutations in the TM2 domain also failed to influence enhancement by sugars and reduced the level of vir induction, but a mutation in the TM2 region adjacent to the cytoplasmic linker abolished induction of the vir genes. In the linker domain, sites essential for vir induction by phenolics were scattered over the entire region. We propose that a topological feature formed by the linker domain and at least part of the TM2 may be crucial for activation of a membrane-anchored VirA protein. Complementation analysis with two different VirA mutants suggested that intermolecular phosphorylation between VirA molecules occurs in vivo, and that two intact periplasmic regions in a VirA dimer are required for the enhancement of vir induction by sugars. Received: 14 December 1999 / Accepted: 10 April 2000  相似文献   

5.
6.
7.
The membrane-bound sensor protein kinase VirA of Agrobacterium tumefaciens detects plant phenolic substances, which induce expression of vir genes that are essential for the formation of the crown gall tumor. VirA also responds to specific monosaccharides, which enhance vir expression. These sugars are sensed by the periplasmic domain of VirA that includes the region homologous to the chemoreceptor Trg, and the phenolics are thought to be detected by a part of the cytoplasmic linker domain, while the second transmembrane domain (TM2) is reported to be nonessential. To define regions of VirA that are essential for signal sensing, we introduced base-substitution and deletion mutations into coding regions that are conserved among the respective domains of VirA proteins from various Agrobacterium strains, and examined the effects of these mutations on vir induction and tumorigenicity. The results show that the Trg-homologous region in the periplasmic domain is not essential for the enhancement of vir gene expression by sugars. Most mutations in the TM2 domain also failed to influence enhancement by sugars and reduced the level of vir induction, but a mutation in the TM2 region adjacent to the cytoplasmic linker abolished induction of the vir genes. In the linker domain, sites essential for vir induction by phenolics were scattered over the entire region. We propose that a topological feature formed by the linker domain and at least part of the TM2 may be crucial for activation of a membrane-anchored VirA protein. Complementation analysis with two different VirA mutants suggested that intermolecular phosphorylation between VirA molecules occurs in vivo, and that two intact periplasmic regions in a VirA dimer are required for the enhancement of vir induction by sugars.  相似文献   

8.
Summary The phoR gene is a bifunctional regulatory gene for the phosphate regulon of Escherichia coli. It acts as a negative regulator in the presence of excess phosphate and as a positive regulator with limited phosphate, through modification of PhoB protein. We constructed several phoR genes, with various deletions in the 5 regions, which were regulated by the trp-lac hybrid promoter. The PhoR1084 and PhoR1159 proteins that lack the 83 and 158 N-terminal amino acids, respectively, retained the positive function for the expression of phoA that codes for alkaline phosphatase, but lacked the negative function. The PhoR1263 protein that lacks the 262 N-terminal amino acids was deficient in both functions. An antiserum against PhoR1084 protein was prepared. Western blot analysis of the subcellular fractions obtained by differential centrifugation indicated that the intact PhoR and PhoR1084 proteins are located in the inner membrane and cytoplasmic fractions, respectively. The results suggest that PhoR protein is anchored to the cytoplasmic membrane by the amino-terminal region.  相似文献   

9.
Transport of ferric-siderophores across the outer membrane of gram-negative bacteria is mediated by specific outer membrane receptors. To localize the substrate-binding domain of the ferric-pseudobactin 358 receptor, PupA, of Pseudomonas putida WCS358, we constructed chimeric receptors in which different domains of PupA were replaced by the corresponding domains of the related ferric-pseudobactin receptors PupB and PupX, or the coprogen receptor FhuE of Escherichia coli. None of the chimeric proteins composed of pseudobactin receptor domains facilitated growth on any of the original substrates, or they showed only an extremely low efficiency. However, these receptors enabled cells of Pseudomonas BN8 to grow on media supplemented with uncharacterized siderophore preparations. These siderophore preparations were isolated from the culture supernatant of WCS358 cells carrying plasmids that contain genes of Pseudomonas B10 required for the biosynthesis of pseudobactin B10. Hybrid proteins that contained at least the amino-terminal 516 amino acids of mature FhuE were active as a receptor for coprogen and interacted with the E. coli TonB protein. A chimeric PupA-FhuE protein, containing the amino-terminal 94 amino acids of mature PupA, was also active as a coprogen receptor, but only in the presence of Pseudomonas TonB. It is concluded that the carboxy-terminal domain of ferric-pseudobactin receptors is important, but not sufficient, for ligand interaction, whereas binding of coprogen by the FhuE receptor is not dependent on this domain. Apparently, the ligand-binding sites of different receptors are located in different regions of the proteins. Furthermore, species-specific TonB binding by the PupA receptor is dependent on the amino-terminal domain of the receptor.  相似文献   

10.
Five genes coding for ice-active proteins were identified from an expressed sequence tag database of Lolium perenne cDNA libraries. Each of the five genes were characterized by the presence of an N-terminal signal peptide, a region enriched in hydrophilic amino acids and a leucine-rich region in four of the five genes that is homologous with the receptor domain of receptor-like protein kinases of plants. The C-terminal region of all five genes contains sequence homologous with Lolium and Triticum ice-active proteins. Of the four ice-active proteins (IAP1, IAP2, IAP3 and IAP5) cloned, three could be expressed in Escherichia coli and recovered in a functional form in order to study their ice activity. All three ice-active proteins had recrystallization inhibition activity but showed no detectable antifreeze or ice nucleation activity at the concentration tested. IAP2 and IAP5 formed distinct hexagonal-shaped crystals in the nanolitre osmometer as compared to the weakly hexagonal crystals produced by IAP3.  相似文献   

11.
The structural gene encoding the Rieske iron-sulfur protein from Thermus thermophilus HB8 has been cloned and sequenced. The gene encodes a protein of 209 amino acids that begins with a hydrophilic N-terminus followed by a stretch of 21 hydrophobic amino acids that could serve as a transmembrane helix. The remainder of the protein has a hydrophobicity pattern typical of a water-soluble protein. A phylogenetic analysis of 26 Rieske proteins that are part of bc 1 or b 6 f complexes shows that they fall into three major groups: eubacterial and mitochondrial, cyanobacterial and plastid, and five highly divergent outliers, including that of Thermus. Although the overall homology with other Rieske proteins is very low, the C-terminal half of the Thermus protein contains the signature sequence CTHLGC-(13X)-CPCH that most likely provides the ligands of the [2Fe-2S] cluster. It is proposed that this region of the protein represents a small domain that folds independently and that the encoding DNA sequence may have been transferred during evolution to several unrelated genes to provide the cluster attachment site to proteins of different origin. The role of individual residues in this domain of the Thermus protein is discussed vis-a-vis the three-dimensional structure of the bovine protein (Iwata et al., 1996 Structure 4, 567–579).  相似文献   

12.
13.
SURFIN4.2 is a parasite-infected red blood cell (iRBC) surface associated protein of Plasmodium falciparum. To analyze the region responsible for the intracellular trafficking of SURFIN4.2 to the iRBC and Maurer's clefts, a panel of transgenic parasite lines expressing recombinant SURFIN4.2 fused with green fluorescent protein was generated and evaluated for their localization. We found that the cytoplasmic region containing a tryptophan rich (WR) domain is not necessary for trafficking, whereas the transmembrane (TM) region was. Two PEXEL-like sequences were shown not to be responsible for the trafficking of SURFIN4.2, demonstrating that the protein is trafficked in a PEXEL-independent manner. N-terminal replacement, deletion of the cysteine-rich domain or the variable region also did not prevent the protein from localizing at the iRBC or Maurer's clefts. A recombinant SURFIN4.2 protein possessing 50 amino acids upstream of the TM region, TM region itself and a part of the cytoplasmic region was shown to be trafficked into the iRBC and Maurer's clefts, suggesting that there are no essential trafficking motifs in the SURFIN4.2 extracellular region. A mini-SURFIN4.2 protein containing WR domain was shown by Western blotting to be more abundantly detected in a Triton X-100-insoluble fraction, compared to the one without WR domain. We suggest that the cytoplasmic region containing the WR may be responsible for their difference in solubility.  相似文献   

14.
TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B12 across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a ∼290 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22–283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second α-helix and the third β-strand of the antiparallel β-sheet. The fourth β-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins. Byron C. H. Chu and R. Sean Peacock contributed equally to this work.  相似文献   

15.
A topological model for the haemolysin translocator protein HlyD   总被引:8,自引:0,他引:8  
Summary A topological model for HlyD is proposed that is based on results obtained with gene fusions of lacZ and phoA to hlyD. Active H1yD-LacZ fusion proteins were only generated when lacZ was fused to hlyD. within the first 180 by (60 amino acids). H1yD-PhoA proteins exhibiting alkaline phosphatase (AP) activity were obtained when phoA was inserted into hlyD. between nucleotides 262 (behind amino acid position 87) and 1405 (behind amino acid position 468, only 10 amino acids away from the C-terminus of HlyD Active insertions of phoA into the middle region of hlyD. were not observed on in vivo transposition but such fusions exhibiting AP activity could be constructed by in vitro techniques. A fusion protein that carried the PhoA part close to the C-terminal end of HlyD proved to be the most stable HlyD-PhoA fusion protein. In contrast to the other, rather unstable, HlyD-PhoA+ fusions, no proteolytic degradation product of this HlyD-PhoA protein was observed and nearly all the alkaline phosphatase activity was membrane bound. Protease accessibility and cell fractionation experiments indicated that the alkaline phosphatase moiety of this fusion protein was located in the periplasm as for all other HlyD-PhoA+ proteins. These data and computer-assisted predictions suggest a topological model for HlyD with the N-terminal 60 amino acids located in the cytoplasm, a single transmembrane segment from amino acids 60 to 80 and a large periplasmic region extending from amino acid 80 to the C-terminus. Neither the HlyD fusion proteins obtained nor a mutant HlyD protein that had lost the last 10 amino acids from the C-terminus of HlyD exhibited translocator activity for HlyA or other reporter proteins carrying the HlyA signal sequence. The C-terminal 10 amino acids of HlyD showed significant similarity with the corresponding sequences of other HlyD-related proteins involved in protein secretion.  相似文献   

16.
17.
Two kinds of truncated human c-myc proteins were produced in Escherichia coli. The human c-myc gene is composed of three exons, exons 2 and 3 having coding capacity for a protein of 439 amino acids. 252 N-terminal amino acids are encoded by exon 2, the C-terminal 187 amino acids being encoded by exon 3. One of the proteins (p42) produced in E. coli corresponds to 342 amino acids from the 98th Gln to the C-terminus, plus 21 amino acids derived from the H-ras gene at the N-terminus. The other (p23) corresponds to 155 amino acids from the 98th Gln to the 252nd Ser, plus five amino acids (Gly-Gly-Thr-Arg-Arg) at the C-terminus, plus 21 amino acids from the H-ras gene at the N-terminus. The p23 protein was produced by using cDNA in which a frame shift occurred at the boundary between exons 2 and 3. We investigated the DNA-binding activity in p42 and p23 proteins. DNA-cellulose column chromatography showed that p42 binds to DNA, whereas p23 does not. This DNA-binding activity of p42 was inhibited by antiserum prepared against p42 but not by antiserum against p23. This indicates that the DNA-binding activity of c-myc protein is localized in the portion encoded by exon 3.  相似文献   

18.
Secretion of Escherichia coli hemolysin is mediated by a sec-independent pathway which requires the products of at least three genes, hlyB, hlyD and tolC. Two regions of HlyD were studied. The first region (region A), consisting of the 33-amino acid, C-terminal part of the HlyD protein, is predicted to form a potential helix-loop-helix structure. This sequence is conserved among HlyD analogues of similar transport systems of other bacterial species. Using site-directed mutagenesis, we showed that the amino acids Leu475, Glu477 and Arg478 of this region are essential for HlyD function. The last amino acid of HlyD, Arg478, is possibly involved in the release of the HlyA protein, since cells bearing a hlyD gene mutant at this position produce similar amounts of HlyA to the wild-type strain, but most of the protein remains cell-associated. Competition experiments between wild-type and mutant HlyD proteins indicate that region A interacts directly with a component of the secretion apparatus. The second region of HIyD (region B), located between amino acids Leul27 and Leu170, is highly homologous to the otherwise unrelated outer membrane protein TolC. Deletion of this region abolishes secretion of hemolysin. This sequence of HlyD also seems to interact with a component of the hemolysin secretion machinery since a hybrid HIyD protein carrying the corresponding TolC sequence, although inactive in the transport of HlyA, is able to displace wild-type HlyD from the secretion apparatus.  相似文献   

19.
20.
Transport of iron across the outer membrane   总被引:36,自引:0,他引:36  
Summary The TonB protein is involved in energy-coupled receptor-dependent transport processes across the outer membrane. The TonB protein is anchored in the cytoplasmic membrane but exposed to the periplasmic space. To fulfill its function, it has to couple the energy-providing metabolism in the cytoplasmic membrane with regulation of outer membrane receptor activity. Ferrichrome and albomycin transport, uptake of colicin M, and infection by the phages T1 and80 occur via the same receptor, the FhuA protein in the outer membrane. Therefore, this receptor is particularly suitable for the study of energy-coupled TonB-dependent transport across the outer membrane. Ferrichrome, albomycin and colicin M bind to the FhuA receptor but are not released into the periplasmic space of unenergized cells, ortonB mutants. In vivo interaction between FhuA and TonB is suggested by the restoration of activity of inactive FhuA proteins, bearing amino acid replacements in the TonB box, by TonB derivatives with single amino acid substitutions. Point mutations in thefhuA gene are suppressed by point mutations in thetonB gene. In addition, naturally occurring degradation of the TonB protein and its derivatives is preferentially prevented in vivo by FhuA and FhuA derivatives where functional interaction takes place. It is proposed that in the energized state, TonB induces a conformation in FhuA which leads to the release of the FhuA-bound compounds into the periplasmic space. Activation of FhuA by TonB depends on the ExbBD proteins in the cytoplasmic membrane. They can be partially replaced by the TolQR proteins which show strong sequence similarity to the ExbBD proteins. A physical interaction of these proteins with the TonB protein is suggested by TonB stabilization through ExbB and TolQR. We propose a permanent or reversible complex in the cytoplasmic membrane composed of the TonB protein and the ExbBD/TolQR proteins through which TonB is energized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号