首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

2.
We have demonstrated that amino acids E (323), Y (324), E (330), and V (331) from the factor Va heavy chain are required for the interaction of the cofactor with factor Xa and optimum rates of prothrombin cleavage. We have also shown that amino acid region 332-336 contains residues that are important for cofactor function. Using overlapping peptides, we identified amino acids D (334) and Y (335) as contributors to cofactor activity. We constructed recombinant factor V molecules with the mutations D (334) --> K and Y (335) --> F (factor V (KF)) and D (334) --> A and Y (335) --> A (factor V (AA)). Kinetic studies showed that while factor Va (KF) and factor Va (AA) had a K D for factor Xa similar to the K D observed for wild-type factor Va (factor Va (WT)), the clotting activities of the mutant molecules were impaired and the k cat of prothrombinase assembled with factor Va (KF) and factor Va (AA) was reduced. The second-order rate constant of prothrombinase assembled with factor Va (KF) or factor Va (AA) for prothrombin activation was approximately 10-fold lower than the second-order rate constant for the same reaction catalyzed by prothrombinase assembled with factor Va (WT). We also created quadruple mutants combining mutations in the amino acid region 334-335 with mutations at the previously identified amino acids that are important for factor Xa binding (i.e., E (323)Y (324) and E (330)V (331)). Prothrombinase assembled with the quadruple mutant molecules displayed a second-order rate constant up to 400-fold lower than the values obtained with prothrombinase assembled with factor Va (WT). The data demonstrate that amino acid region 334-335 is required for the rearrangement of enzyme and substrate necessary for efficient catalysis of prothrombin by prothrombinase.  相似文献   

3.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

4.
The prothrombinase complex consists of the protease factor Xa, Ca2+, and factor Va assembled on an anionic membrane. Factor Va functions both as a receptor for factor Xa and a positive effector of factor Xa catalytic efficiency and thus is key to efficient conversion of prothrombin to thrombin. The activation of the procofactor, factor V, to factor Va is an essential reaction that occurs early in the process of tissue factor-initiated blood coagulation; however, the catalytic sequence leading to formation of factor Va is a subject of disagreement. We have used biophysical and biochemical approaches to establish the second order rate constants and reaction pathways for the activation of phospholipid-bound human factor V by native and recombinant thrombin and meizothrombin, by mixtures of prothrombin activation products, and by factor Xa. We have also reassessed the activation of phospholipid-bound human prothrombin by factor Xa. Numerical simulations were performed incorporating the various pathways of factor V activation including the presence or absence of the pathway of factor V-independent prothrombin activation by factor Xa. Reaction pathways for factor V activation are similar for all thrombin forms. Empirical rate constants and the simulations are consistent with the following mechanism for factor Va formation. alpha-Thrombin, derived from factor Xa cleavage of phospholipid-bound prothrombin via the prethrombin 2 pathway, catalyzes the initial activation of factor V; generation of factor Va in a milieu already containing factor Xa enables prothrombinase formation with consequent meizothrombin formation; and meizothrombin functions as an amplifier of the process of factor V activation and thus has an important procoagulant role. Direct activation of factor V by factor Xa at physiologically relevant concentrations does not appear to be a significant contributor to factor Va formation.  相似文献   

5.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

6.
Barhoover MA  Orban T  Bukys MA  Kalafatis M 《Biochemistry》2008,47(48):12835-12843
The prothrombinase complex catalyzes the activation of prothrombin to alpha-thrombin. We have repetitively shown that amino acid region (695)DYDY(698) from the COOH terminus of the heavy chain of factor Va regulates the rate of cleavage of prothrombin at Arg(271) by prothrombinase. We have also recently demonstrated that amino acid region (334)DY(335) is required for the optimal activity of prothrombinase. To assess the effect of these six amino acid residues on cofactor activity, we created recombinant factor Va molecules combining mutations at amino acid regions 334-335 and 695-698 as follows: factor V(3K) ((334)DY(335) --> KF and (695)DYDY(698) --> KFKF), factor V(KF/4A) ((334)DY(335) --> KF and (695)DYDY(698) --> AAAA), and factor V(6A) ((334)DY(335) --> AA and (695)DYDY(698) --> AAAA). The recombinant factor V molecules were expressed and purified to homogeneity. Factor Va(3K), factor Va(K4/4A), and factor Va(6A) had reduced affinity for factor Xa, when compared to the affinity of the wild-type molecule (factor Va(Wt)) for the enzyme. Prothrombinase assembled with saturating concentrations of factor Va(3K) had a 6-fold reduced second-order rate constant for prothrombin activation compared to the value obtained with prothrombinase assembled with factor Va(Wt), while prothrombinase assembled with saturating concentrations of factor Va(KF/4A) and factor Va(6A) had approximately 1.5-fold reduced second-order rate constants. Overall, the data demonstrate that amino acid region 334-335 together with amino acid region 695-698 from factor Va heavy chain are part of a cooperative mechanism within prothrombinase regulating cleavage and activation of prothrombin by factor Xa.  相似文献   

7.
Prothrombin is activated to thrombin by two sequential factor Xa-catalyzed cleavages, at Arg271 followed by cleavage at Arg320. Factor Va, along with phospholipid and Ca2+, enhances the rate of the process by 300,000-fold, reverses the order of cleavages, and directs the process through the meizothrombin pathway, characterized by initial cleavage at Arg320. Previous work indicated reduced rates of prothrombin activation with recombinant mutant factor Va defective in factor Xa binding (E323F/Y324F and E330M/V331I, designated factor VaFF/MI). The present studies were undertaken to determine whether loss of activity can be attributed to selective loss of efficiency at one or both of the two prothrombin-activating cleavage sites. Kinetic constants for the overall activation of prothrombin by prothrombinase assembled with saturating concentrations of recombinant mutant factor Va were calculated, prothrombin activation was assessed by SDS-PAGE, and rate constants for both cleavages were analyzed from the time course of the concentration of meizothrombin. Prothrombinase assembled with factor VaFF/MI had decreased k(cat) for prothrombin activation with Km remaining unaffected. Prothrombinase assembled with saturating concentrations of factor VaFF/MI showed significantly lower rate for cleavage of plasma-derived prothrombin at Arg320 than prothrombinase assembled with saturating concentrations of wild type factor Va. These results were corroborated by analysis of cleavage of recombinant prothrombin mutants rMz-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A), which can be cleaved only at Arg320 or Arg271, respectively. Time courses of these mutants indicated that mutations in the factor Xa binding site of factor Va reduce rates for both bonds. These data indicate that the interaction of factor Xa with the heavy chain of factor Va strongly influences the catalytic activity of the enzyme resulting in increased rates for both prothrombin-activating cleavages.  相似文献   

8.
Interaction of prothrombin with factor Va-phospholipid complexes   总被引:1,自引:0,他引:1  
The effects of factor Va and the phospholipid-binding fragment of factor Va [factor Va light chain (LC), Mr 80000] on the binding of prothrombin, factor X, and factor Xa to phospholipid vesicles are reported. Equilibrium binding experiments were performed that utilized large-volume vesicles, which can be removed from the bulk solution by centrifugation. Factor Va decreased the dissociation constant of the prothrombin-phospholipid complex 50-fold, from 2.0 X 10(-7) M to 4.0 X 10(-9) M. For the factor X-phospholipid complex the decrease was 60-fold (1.8 X 10(-7) M to 3.0 X 10(-9) M) and for factor Xa, 160-fold (1.6 X 10(-7) M to 1.0 X 10(-9) M). The ratios of moles of protein bound to moles of total added factor Va at saturation of phospholipid-bound factor Va indicate an 1:1 stoichiometric complex of either factor Xa, factor X, or prothrombin and phospholipid-bound factor Va. In the presence of factor Va LC, the dissociation constants of factor Xa- and prothrombin-phospholipid complexes were increased, while the maximal protein-binding capacities of the vesicles were not affected by factor Va LC. The data suggest a competitive interaction between factor Xa and factor Va LC binding as well as between prothrombin and factor Va LC binding at the phospholipid surface. From this, it is concluded that the phospholipid-binding fragment of factor Va alone does not serve as the binding site for interactions of factor Xa and prothrombin with factor Va.  相似文献   

9.
Purified PIVKA-II exhibits some factor II (prothrombin) activity in the one-stage coagulation assay and this factor II activity does not come from residual amounts of factor II but originates from PIVKA-II itself. It is shown that PIVKA-II is converted by a normal prothrombinase complex (factor Va and factor Xa adsorbed onto a phospholipid interface) more readily than by phospholipids and factor Xa alone. This suggests that binding between PIVKA-II and factor Va is an essential feature in the formation of the enzyme . substrate complex and from this we infer that a direct interaction between factor Va and prothrombin plays a r?le in the prothrombinase . prothrombin complex.  相似文献   

10.
The S1 site (Asp(189)) of factor Xa (fXa) is located on a loop (residues 185-189) that contains three solvent-exposed charged residues (Asp(185), Lys(186), and Glu(188)) below the active-site pocket of the protease. To investigate the role of these residues in the catalytic function of fXa, we expressed three mutants of the protease in which the charges of these residues were neutralized by their substitutions with Ala (D185A, K186A, and E188A). Kinetic studies revealed that E188A has a normal catalytic activity toward small synthetic and natural substrates and inhibitors of fXa; however, the same activities were slightly ( approximately 2-fold) and dramatically ( approximately 20-50-fold) impaired for the D185A and K186A mutants, respectively. Further studies revealed that the affinity of D185A and K186A for interaction with Na(+) has also been altered, with a modest impairment ( approximately 2-fold) for the former and a dramatic impairment for the latter mutant. Both prothrombinase and direct binding studies indicated that K186A also has an approximately 6-fold impaired affinity for factor Va. Interestingly, a saturating concentration of factor Va restored the catalytic defect of K186A in reactions with prothrombin and the recombinant tick anticoagulant peptide that is known to interact with the Na(+) loop of fXa, but not with other substrates. These results suggest that factor Va interacts with 185-189-loop for fXa, which is energetically linked to the Na(+)-binding site of the protease.  相似文献   

11.
Activated Factor V (FVa) functions as a membrane-bound cofactor to the enzyme Factor Xa (FXa) in the conversion of prothrombin to thrombin, increasing the catalytic efficiency of FXa by several orders of magnitude. To map regions on FVa that are important for binding of FXa, site-directed mutagenesis resulting in novel potential glycosylation sites on FV was used as strategy. The consensus sequence for N-linked glycosylation was introduced at sites, which according to a computer model of the A domains of FVa, were located at the surface of FV. In total, thirteen different regions on the FVa surface were probed, including sites that are homologous to FIXa-binding sites on FVIIIa. The interaction between the FVa variants and FXa and prothrombin were studied in a functional prothrombin activation assay, as well as in a direct binding assay between FVa and FXa. In both assays, the four mutants carrying a carbohydrate side chain at positions 467, 511, 652, or 1683 displayed attenuated FXa binding, whereas the prothrombin affinity was unaffected. The affinity toward FXa could be restored when the mutants were expressed in the presence of tunicamycin to inhibit glycosylation, indicating the lost FXa affinity to be caused by the added carbohydrates. The results suggested regions surrounding residues 467, 511, 652, and 1683 in FVa to be important for FXa binding. This indicates that the enzyme:cofactor assembly of the prothrombinase and the tenase complexes are homologous and provide a useful platform for further investigation of specific structural elements involved in the FVa.FXa complex assembly.  相似文献   

12.
Because charged residues at the intracellular ends of transmembrane helix (TMH) 2 and TMH3 of G protein-coupled receptors (GPCRs) affect signaling, we performed mutational analysis of these residues in the constitutively signaling Kaposi's sarcoma-associated herpesvirus GPCR (KSHV-GPCR). KSHV-GPCR contains the amino acid sequence Val-Arg-Tyr rather than the Asp/Glu-Arg-Tyr ((D/E)RY) motif at the intracellular end of TMH3. Mutation of Arg-143 to Ala (R143A) or Gln (R143Q) abolished constitutive signaling whereas R143K exhibited 50% of the basal activity of KSHV-GPCR. R143A was not stimulated by agonist, whereas R143Q was stimulated by growth-related oncogene-alpha, and R143K, similar to KSHV-GPCR, was stimulated further. These findings show that Arg-143 is critical for signal generation in KSHV-GPCR. In other GPCRs, Arg in this position may act as a signaling switch by movement of its sidechain from a hydrophilic pocket in the TMH bundle to a position outside the bundle. In rhodopsin, the Arg of Glu-Arg-Tyr interacts with the adjacent Asp to constrain Arg outside the TMH bundle. V142D was 70% more active than KSHV-GPCR, suggesting that an Arg residue, which is constrained outside the bundle by interacting with Asp-142, leads to a receptor that signals more actively. Because the usually conserved Asp in the middle of TMH2 is not present in KSHV-GPCR, we tested whether Asp-83 at the intracellular end of TMH2 was involved in signaling. D83N and D83A were 110 and 190% more active than KSHV-GPCR, respectively. The double mutant D83A/V142D was 510% more active than KSHV-GPCR. That is, cosubstitutions of Asp-83 by Ala and Val-142 by Asp act synergistically to increase basal signaling. A model of KSHV-GPCR predicts that Arg-143 interacts with residues in the TMH bundle and that the sidechain of Asp-83 does not interact with Arg-143. These data are consistent with the hypothesis that Arg-143 and Asp-83 independently affect the signaling activity of KSHV-GPCR.  相似文献   

13.
The rates of prothrombin activation under initial conditions of invariant concentrations of prothrombin and Factor Xa were studied in the presence of various combinations of Ca2+, homogeneous bovine Factor V, Factor Va, phosphatidylcholine-phosphatidylserine vesicles, and activated bovine platelets. Reactions were monitored continuously through the enhanced fluorescence accompanying the interaction of newly formed thrombin with dansylarginine-N-(3-ethyl-1,5-pentanediyl) amide. The complete prothrombinase (Factor Xa, Ca2+, phospholipid, and Factor Va) behaved as a "typical" enzyme and catalyzed the activation of prothrombin with an apparent Vmax of 2100 mol of thrombin/min/mol of Factor Va or Factor Xa, whichever was the rate-limiting component. Regardless of whether the enzymatic complex was composed of Factor Xa, Ca2+, and plasma Factor Va plus phospholipid vesicles, or activated platelets in the place of the latter components, similar specific activity values were observed. The combination of Factor Va, Ca2+, and phospholipid enhanced the rate of the Factor Xa-catalyzed activation of prothrombin by a factor of 278,000. Factor Va itself when added to Factor Xa, Ca2+, and phospholipid, enhanced the rate of prothrombin activation by a factor of 13,000. Unactivated Factor V appears to possess 0.27% of the procoagulant activity of thrombin-activated Factor Va. From the kinetics of prothrombinase activity, an interaction between Factor Xa and both Factor V and Factor Va was observed, with apparent 1:1 stoichiometries and dissociation constants of 7.3 x 10(-10) M for Factor Va and 2.7 x 10(-9) M for Factor V. The present data, combined with data on the equilibrium binding of prothrombinase components to phospholipid, indicate that the model prothrombinase described in this paper consists of a phospholipid-bound, stoichiometric complex of Factor Va and Factor Xa, with bound Factor Va serving as the "binding site" for Factor Xa, in concert with its proposed role in platelets.  相似文献   

14.
The molecular basis of the substrate and inhibitor specificity of factor Xa, the serine proteinase of the prothrombinase complex, was investigated by constructing two mutants of human antithrombin (HAT) in which the reactive site loop of the serpin from the P4-P4' site was replaced with the corresponding residues of the two factor Xa cleavage sites in prothrombin (HAT/Proth-1 and HAT/Proth-2). These mutants together with prethrombin-2, the smallest zymogen form of thrombin containing only the second factor Xa cleavage site, were expressed in mammalian cells, purified to homogeneity and characterized in kinetic reactions with factor Xa in both the absence and presence of cofactors; factor Va, high affinity heparin and pentasaccharide fragment of heparin. HAT/Proth-1 inactivated factor Xa approximately 3-4-fold better than HAT/Proth-2 in either the absence or presence of heparin cofactors. In the absence of a cofactor, factor Xa reacted with the HAT/Proth-2 and prethrombin-2 with similar second-order rate constants (approximately 2-3x10(2) M(-1)s(-1)). Pentasaccharide catalyzed the inactivation rate of factor Xa by the HAT mutants 300-500-fold. A similar 10(4)-10(5)-fold enhancement in the reactivity of factor Xa with prethrombin-2 and the HAT mutants was observed in the presence of the cofactors Va and heparin, respectively. Factor Va did not influence the reactivity of factor Xa with either one of the HAT mutants. These results suggest that (1) in the absence of a cofactor, the P4-P4' residues of HAT and prethrombin-2 primarily determine the specificity reactions with factor Xa, (2) factor Va binding to factor Xa is not associated with allosteric changes in the catalytic pocket of enzyme that would involve interactions with the P4-P4' binding sites, and (3) similar to allosteric activation of HAT by heparin, a role for factor Va in the prothrombinase complex may involve rearrangement of the residues surrounding the scissile bond of the substrate to facilitate its optimal docking into the catalytic pocket of factor Xa.  相似文献   

15.
Kalafatis M  Beck DO 《Biochemistry》2002,41(42):12715-12728
We have recently shown that amino acid region 307-348 of factor Va heavy chain (42 amino acids, N42R) is critical for cofactor activity and may contain a binding site for factor Xa and/or prothrombin [(2001) J. Biol. Chem. 276, 18614-18623]. To ascertain the importance of this region for factor Va cofactor activity, we have synthesized eight overlapping peptides (10 amino acid each) spanning amino acid region 307-351 of the heavy chain of factor Va and tested them for inhibition of prothrombinase activity. The peptides were also tested for the inhibition of the binding of factor Va to membrane-bound active site fluorescent labeled Glu-Gly-Arg human factor Xa ([OG488]-EGR-hXa). Factor Va binds specifically to membrane-bound [OG488]-EGR-hXa (10nM) with half-maximum saturation reached at approximately 6 nM. N42R was also found to interact with [OG488]-EGR-hXa with half-maximal saturation observed at approximately 230 nM peptide. N42R was found to inhibit prothrombinase activity with an IC50 of approximately 250 nM. A nonapeptide containing amino acid region 323-331 of factor Va (AP4') was found to be a potent inhibitor of prothrombinase. Kinetic analyses revealed that AP4' is a noncompetitive inhibitor of prothrombinase with respect to prothrombin, with a K(i) of 5.7 microM. Thus, the peptide interferes with the factor Va-factor Xa interaction. Displacement experiments revealed that the nonapeptide inhibits the direct interaction of factor Va with [OG488]-EGR-hXa (IC50 approximately 7.5 microM). The nonapeptide was also found to bind directly to [OG488]-EGR-hXa and to increase the catalytic efficiency of factor Xa toward prothrombin in the absence of factor Va. In contrast, a peptadecapeptide from N42R encompassing amino acid region 337-351 of factor Va (P15H) had no effect on either prothrombinase activity or the ability of the cofactor to interact with [OG488]-EGR-hXa. Our data demonstrate that amino acid sequence 323-331 of factor Va heavy chain contains a binding site for factor Xa.  相似文献   

16.
Coagulation factor X, when activated to factor Xa by proteolytic cleavage, itself becomes an active serine protease which participates as a component of the macromolecular prothrombinase complex along with factor Va, phospholipid, and calcium ions. To identify specific structural regions on factor Xa responsible for mediating its function in activating prothrombin, we used 21 synthetic peptides corresponding to 65% of the primary structure of factor X as potential inhibitors of prothrombin activation. Using purified components, thrombin formation was inhibited by seven peptides in a dose-dependent noncompetitive manner. Antibodies to selected inhibitory peptides affinity purified on a factor Xa-agarose column inhibited thrombin formation in a dose-dependent manner, indicating that the corresponding regions on factor Xa are surface-exposed. Kinetic analyses varying the order of reagent addition suggested that peptides 211-222, 254-269, and 263-274 were highly effective in preventing the factor Xa-factor Va interaction. Peptides 275-287 and 415-425 were considered to derive from a distal region involved in substrate binding, based upon mixed inhibition kinetic analyses and assuming that inhibitory peptides not inhibitory in factor Va binding are related to a specific region of substrate interaction. Cross-linking studies confirmed that peptides 263-274 and 263-276 could bind specifically to the light chain of factor V/Va. These findings provide the basis for further pursuing the precise definition of interactive sites on factor Xa using site-directed mutagenesis and molecular modeling.  相似文献   

17.
The kinetic parameters of bovine prothrombin activation by factor Xa were determined in the absence and presence of factor Va as a function of the phospholipid concentration and composition. In the absence of factor Va, the Km for prothrombin increases proportionally with the phospholipid concentration and correlates well with the affinity of prothrombin for the different membranes. Phospholipid vesicles with a high affinity for prothrombin yield low Km values compared to membranes with less favorable binding parameters. At limited phospholipid concentrations, the Vmax of prothrombin activation correlates with the binding affinity of factor Xa for the various phospholipid vesicles. Membranes with a high affinity for factor Xa have high Vmax values, while for membranes with a low affinity a low Vmax is observed. Extrapolation of double-reciprocal plots of 1/Vmax vs. 1/[phospholipid] to infinite phospholipid concentrations, a condition at which all factor Xa would participate in prothrombin activation, yields a kcat of 2-4 min-1 independent of the type and amount of acidic phospholipid present in the vesicles. Also, in the presence of factor Va the Km for prothrombin varies proportionally with the phospholipid concentration. There is, however, no correlation between the binding parameters and the Km. Factor Va drastically lowers the Km for prothrombin for vesicles that have a low affinity for prothrombin. Vesicles composed of 20 mol % phosphatidylglycerol and 80 mol % phosphatidylcholine have a Km of 0.04 microM when factor Va is present, compared to 2.2 microM determined in the absence of factor Va.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Regulatory exosite I of thrombin is present on prothrombin in a precursor state (proexosite I) that specifically binds the Tyr(63)-sulfated peptide, hirudin(54-65) (Hir(54-65)(SO(3)(-))) and the nonsulfated analog. The role of proexosite I in the mechanism of factor Va acceleration of prothrombin activation was investigated in kinetic studies of the effects of peptide binding. The initial rate of human prothrombin activation by factor Xa was inhibited by the peptides in the presence of factor Va but not in the absence of the cofactor. Factor Xa and factor Va did not bind the peptide with significant affinity compared with prothrombin. Maximum inhibition reduced the factor Va-accelerated rate to a level indistinguishable from the rate in the absence of the cofactor. The effect of Hir(54-65)(SO(3)(-)) on the kinetics of prothrombin activation obeyed a model in which binding of the peptide to proexosite I prevented productive prothrombin interactions with the factor Xa-factor Va complex. Comparison of human and bovine prothrombin as substrates demonstrated a similar correlation between peptide binding and inhibition of factor Va acceleration. Inhibition of prothrombin activation by hirudin peptides was opposed by assembly on phospholipid vesicles of the membrane-bound factor Xa-factor-Va-prothrombin complex. Factor Va interactions of human and bovine prothrombin activation are concluded to share a common mechanism in which proexosite I participates in productive interactions of prothrombin as the substrate of the factor Xa-factor Va complex, possibly by directly mediating productive prothrombin-factor Va binding.  相似文献   

19.
Anticoagulant mechanism of the coagulation factor IX/factor X-binding protein (IX/X-bp) isolated from the venom of Trimeresurus flavoviridis was investigated. IX/X-bp had no effect on the amidase activity of factor Xa measured with a synthetic peptide substrate Boc-Leu-Gly-Arg-pNA. Prothrombin activation by factor Xa without cofactors, such as factor Va and phospholipids, was only slightly influenced by IX/X-bp. However, prothrombin activation by factor Xa in the presence of factor Va resulted in IX/X-bp inhibiting the increase of k(cat) of thrombin formation through inhibition of interaction between factor Xa and factor Va. IX/X-bp also inhibited the decrease of K(m) for thrombin formation through interaction with phospholipids. Thus, IX/X-bp appears to act as an anticoagulant protein by inhibiting the interaction between factor Xa and its cofactors in the prothrombinase complex by binding to the Gla domain of factor Xa.  相似文献   

20.
Thrombin-activated factor Va and factor Va subunit binding to large-volume vesicles was investigated by a technique based on the separation by centrifugation of phospholipid-bound protein from the bulk solution. This technique allows the direct measurement of free-protein concentration. It is concluded that the phospholipid binding site on factor Va is located on a basic factor Va subunit with Mr 80 000 (factor Va-LC). The effects of phospholipid vesicle composition, calcium concentration, pH, and ionic strength on the equilibrium constants of factor Va- and factor Va-LC-phospholipid interaction were studied. Factor Va and factor Va-LC binding to phospholipid requires the presence of negatively charged phospholipids. It is further demonstrated that the following occur: (a) Calcium ions compete with factor Va and factor Va-LC for phospholipid-binding sites. (b) The dissociation constant of protein-phospholipid interaction increases with the ionic strength, whereas the maximum protein-binding capacity of the phospholipid vesicle was not affected by ionic strength. (c) The dissociation constant for factor Va-phospholipid interaction depends on pH when the vesicle consists of phosphatidic acid. It is concluded that factor Va-phospholipid interaction is primarily electrostatic in nature, where positively charged groups on the protein directly interact with the phosphate group of net negatively charged phospholipids. The results suggest that factor Va, like factor Xa and prothrombin, has the characteristics of an extrinsic membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号