首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
花生是世界范围内广泛种植的重要油料作物之一,其种子中富含油酸和亚油酸。△12脂肪酸脱氢酶(FAD2)是亚油酸合成的关键酶,催化油酸(18:1)在△12位上脱氢生成亚油酸(18:2),但由于△12脂肪酸脱氢酶本身的特性,目前还没有有效的方法将其纯化并在蛋白水平作进一步的研究,尚需对其结构和功能之间以及表达调控进行更深入全面的研究。本文利用从花生中克隆的△12脂肪酸脱氢酶基因(GenBank接受号为AY1006)构建高效表达载体,把花生?12脂肪酸脱氢酶基因全长序列插入到大肠杆菌高效表达载体pRSETB中,构建了pRSET/HO-A融合表达载体,并转化到大肠杆菌表达菌BL21(DE3)pLysS中,在IPTG诱导下,pRSET/HO-A融合表达载体在BL21(DE3)pLysS菌株中高效表达了?12脂肪酸脱氢酶。利用Clon-Tech蛋白纯化Kit进一步分离了目的蛋白,同时加入外源性底物油酸在20℃温育6h后,进行脂肪酸甲酯化处理,通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,所编码的酶具有?12脂肪酸脱氢酶的活性,能将外源性的底物油酸转化为亚油酸,转化率为11.8%。花生△12脂肪酸脱氢酶基因的原核表达目前国内外还未见报导,本实验为其进一步的大量纯化和结构功能分析奠定了基础。  相似文献   

2.
△12-脂肪酸脱氢酶基因在大肠杆菌中的表达   总被引:2,自引:0,他引:2  
把高山被孢霉(Mortierella alpina)和深黄被孢霉(Monierella isabellina)的△^12-脂肪酸脱氢酶基因亚克隆到大肠杆菌表达载体pET21a中,获得重组表达载体pMACL12和pMICL12,并用氯化钙方法将重组表达载体转化到大肠杆菌B121(DE3)中。筛选阳性克隆进行培养,然后分离其细胞膜蛋白,并构建体外表达体系,同时加入外源性底物油酸进行表达。经气相色谱(GC)分析表明,分别有17.87%和17.60%的油酸转化为亚油酸。  相似文献   

3.
把高山被孢霉 (Mortierellaalpina)和深黄被孢霉 (Mortierellaisabellina)的Δ1 2 脂肪酸脱氢酶基因亚克隆到大肠杆菌表达载体pET2 1a中 ,获得重组表达载体pMACL1 2和pMI CL1 2 ,并用氯化钙方法将重组表达载体转化到大肠杆菌BL2 1 (DE3)中。筛选阳性克隆进行培养 ,然后分离其细胞膜蛋白 ,并构建体外表达体系 ,同时加入外源性底物油酸进行表达。经气相色谱 (GC)分析表明 ,分别有 1 7 87%和 1 7 60 %的油酸转化为亚油酸  相似文献   

4.
亚油酸、亚麻酸是哺乳动物体内的必需脂肪酸,但哺乳动物由于缺乏△12和ω-3脂肪酸脱氢酶而自身不能合成.△12和ω-3脂肪酸脱氢酶存在于真菌、植物和一些低等动物中.为了实现哺乳动物细胞亚油酸的自身合成,克隆了线虫编码△12脂肪酸脱氢酶的FAT-2基因eDNA序列,通过优化密码子,构建真核表达载体,稳定转染细胞,经抗生素筛选获得稳定整合FAT-2基因的CHO细胞.PCR和RNA印迹(Northern blot)验证了基因的整合和表达.气相色谱分析细胞的脂肪酸含量表明,FAT-2基因的表达显著提高了转基因细胞中亚油酸的含量,亚油酸含量为阴性对照细胞的2.4倍.研究结果表明,低等动物△12脂肪酸脱氢酶可以重建哺乳动物多不饱和脂肪酸合成途径,并利用细胞中的油酸合成亚油酸.上述研究为进一步利用转基因技术促进农业动物合成多不饱和脂肪酸从而提高食品营养价值奠定基础.  相似文献   

5.
把高山被孢霉 (Mortierellaalpina)和深黄被孢霉 (Mortierellaisabellina)的Δ12-脂肪酸脱氢酶基因亚克隆到大肠杆菌表达载体pET21a中 ,获得重组表达载体pMACL12和pMI CL12 ,并用氯化钙方法将重组表达载体转化到大肠杆菌BL21 (DE3)中。筛选阳性克隆进行培养 ,然后分离其细胞膜蛋白 ,并构建体外表达体系 ,同时加入外源性底物油酸进行表达。经气相色谱 (GC)分析表明 ,分别有 17.87%和 17  相似文献   

6.
将克隆的油酸脱氢酶基因(AF900663)亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES6/CT,从大肠杆菌中筛选到含有目的基因的重组质粒pYES/HO-A,用醋酸锂方法转化到酿酒酵母缺陷型菌株INVScI中,经半乳糖诱导后,收集菌体,用气相色谱质谱(GC-MS)仪分析转化酵母的脂肪酸色谱的结果表明,HO-A所编码的酶具有油酸脱氢酶活性,能将酵母内源性油酸转化为亚油酸,油酸脱氢酶的表达量为15.6%,高于已有的报道。  相似文献   

7.
为获得产高γ—亚麻酸的酿酒酵母工程菌株,应用RT—PCR技术,从卷枝毛霉中扩增出△^6—脂肪酸脱氢酶基因,亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0,在大肠杆菌中筛选到含有目的基因的重组质粒pYES412,用醋酸锂方法转化到酿酒酵母缺陷型菌株INVScl中,在SC—ura合成培养基中筛选到转化酵母,在合适的培养基及培养条件下,加入外源底物亚油酸,经半乳糖诱导后,收集菌体,通过气相色谱对转化酵母进行脂肪酸色谱分析,结果表明:γ—亚麻酸占总脂肪的50.07%。迄今为止,这是国内外△^6—脂肪酸脱氢酶基因在酿酒酵母表达量最高的报道。  相似文献   

8.
△^6-脂肪酸脱氢酶基因是形成γ-亚麻酸的关键酶。从含有高山被孢霉△^6-脂肪酸脱氢酶基因的重组质粒pT-MACL6中,酶切出1.4kb的目的片段,亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0,在大肠杆菌中筛选到含有目的基因的重组质粒pYMAD6,用醋酸昔方法转化到酿洒酵母的缺陷型菌株INCSc1中,在SC-Ura合成培养基中,选择得到酿酒酵母工程株YMAD6。在合适的培养基及培养条件下,加入外源底物亚油酸,经半乳糖诱导后,收集菌体。通过GC-MS对酵母工程株进行脂肪酸色谱分析,结果表明,产生了31.6%的γ-亚麻酸,边是迄今为止,国内外△^6-脂肪酸脱氢酶基因在酿酒酵母中表达量最高的报道。  相似文献   

9.
少根根霉△^6-脂肪酸脱氢酶基因的克隆和表达   总被引:1,自引:0,他引:1  
根据真菌△^6-脂肪酸脱氢酶保守的氨基酸序列设计简并引物进行RT-PCR,获得一个593 bp的cDNA片段,再根据获得的部分序列设计基因特异性引物,通过cDNA末端扩增技术(RACE)获得该cDNA的3’和5’序列,从而得到全长为1482bp的cDNA序列。序列分析结果表明,该序列具有一个长度为1377bp、编码458个氨基酸的开放阅读框,所编码蛋白质的大小为52kD。与报道的△^6-脂肪酸脱氢酶一样,推测的氨基酸序列具有膜整合脂肪酸脱氢酶特异性的3个组氨酸保守区和疏水结构,在其氨基酸序列的N-末端具有类似于细胞色素b5的血红素结合区。该序列为一个新的编码△^6-脂肪酸脱氢酶的基因,为了验证其功能,把开放阅读框序列RAD6亚克隆到表达载体pYES2.0,构建重组表达载体pYRAD6,并转化到酿酒酵母的缺陷型菌株INVScl进行表达。通过气相色谱(GC)和气相色谱/质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达。所编码的酶具有△^6-脂肪酸脱氢酶活性,能将外源性的底物亚油酸转化为γ-亚麻酸,γ-亚麻酸的含量占酵母总脂肪酸的3.85%。  相似文献   

10.
根据真菌△^6 -脂肪酸脱氢酶基因保守的组氨酸Ⅱ区和Ⅲ区附近保守序列设计兼并引物进行RT-PCR,得到雅致枝霉(Thamnidium elegans)As3.2806△^6 -脂肪酸脱氢酶基因459bp部分cDNA序列,然后通过快速扩增cDNA末端技术(RACE)向两端延伸得到1504bp的△^6 -脂肪酸脱氢酶基因全长cDNA序列。序列分析表明有一个1377bp、编码459个氨基酸的开放阅读框TED6。推测的氨基酸序列与已知其他真菌的△^6 -脂肪酸脱氧酶基因的氨基酸序列比对,具有3个组氨酸保守区、2个疏水区及N末端细胞色素b5融合区。将此编码区序列亚克隆到酿酒酵母缺陷型菌株INVSel的表达载体pYES2.0中,构建表达载体pYTED6,并在酿酒酵母INVSel中异源表达。通过气相色谱(GC)和气相色谱,质谱(GC-MS)分析表明,该序列在酿酒酵母中获得表达,产生γ-亚麻酸(GLA)的含量占酵母总脂肪酸的7.5%。证明此序列编码的蛋白能将外加的亚油酸转化为γ-亚麻酸,是一个新的有功能的△^6 -脂肪酸脱氢酶基因(GenBank.AY941161)。  相似文献   

11.
深黄被孢霉△^6—脂肪酸脱氢酶基因的克隆及序列分析   总被引:14,自引:0,他引:14  
γ-亚麻酸(GLA,C18:3△^6,9,12)是由△^6-脂肪酸脱氢酶以亚油酸(LA,C18:2△^9,12)为底物,在C6位脱氢形成的。由于在人体中,γ-亚麻酸是花生四烯酸、前列腺素类和白三烯类等生理活性物质的前体物,而深黄被孢霉是目前用于微生物发酵生产γ-亚麻酸的主要菌株。本文根据脂肪酸脱氢酶的保守区设计引物,利用反转录聚合酶链式反应从丝状真菌深黄被孢霉中克隆了编码△^6-脂肪酸脱氢酶的cDNA,全长为1374个核苷酸,编码457个氨基酸,但与其他位点的脂肪酸脱氢酶不同的是,△^6-脂肪酸脱氢酶在其序列的N端特有细胞色素b5(Cytb5)区。这是国际上对深黄被孢霉△^6-脂肪酸脱氢酶基因的首次报道。  相似文献   

12.
△5-脂肪酸脱氢酶是合成花生四烯酸的关键酶.根据已报道的△5-脂肪酸脱氢酶基因设计引物,分别从三角褐指藻基因组DNA和总cDNA中扩增得到1520 bp和1410 bp的特异片段,序列分析结果显示,结构基因中含有一个大小为110 bp的内含子,这是国内外首次报道.将△5-脂肪酸脱氢酶基因亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0中,在大肠杆菌中筛选到含有目的片段的重组质粒pYPTD5,用电击转化的方法将重组质粒pYPTD5转化到营养缺陷型酿酒酵母菌株INVSc1中,在缺省培养基中筛选得到酿酒酵母转化菌株YPTD5,在合适的培养条件下,添加外源底物双高γ-亚麻酸和诱导物半乳糖,培养并收集菌体.通过脂肪酸甲酯气相色谱分析,表明三角褐指藻△5-脂肪酸脱氢酶基因在酿酒酵母中获得了高效的表达,将双高γ-亚麻酸转化为花生四烯酸,其底物转化率达到了45.9%.  相似文献   

13.
玉米△12脂肪酸脱氢酶是催化油酸形成亚油酸的关键酶。将其编码基因FAD2(GenBank登陆号:DQ496227)克隆到酿酒酵母表达载体pYES2.0中,构建成重组质粒pYE/FAD2,转化到酿酒酵母进行诱导表达,同时以pYES2.0转化子为对照。气相色谱(Gc)分析表明,重组转化子亚油酸的含量占酵母总脂肪酸的1.54%,而对照未检测到亚油酸。表明FAD2基因具有编码△12脂肪酸脱氢酶的功能。为探索转译起始密码子周边序列的改变对FAD2基因表达产生的影响,将该基因的起始密码子上游序列进行修改,构建重组表达载体pYE/FAD2—1,转化酿酒酵母进行表达。GC分析表明,pYE/FAD2—1转化子的亚油酸含量占总脂肪酸含量的8.81%,是对照pYE/FAD2转化子的近5倍。  相似文献   

14.
以质粒pGEM-TFAD4为模板,扩增获得1.6kb的△^4-脂肪酸脱饱和酶基因(FAD4)。将FAD4酶切后连接到hin dⅢ,Xba I处理过的pYEs2.0载体,构建重组表达质粒pYFAD4。转化酿酒酵母缺陷型菌INVScl,通过SC-U选择性培养基筛选阳性克隆子。添加外源脂肪酸C22:5底物,半乳糖诱导表达。气相色谱分析表明阳性克隆子总脂肪酸中出现了二十二碳六烯酸C22:6(占酵母总脂肪含量的41.13%),△^4-脂肪酸脱饱和酶基因在酿酒酵母中得到了表达。  相似文献   

15.
分选酶A在pET32a(+)原核表达载体中的表达和鉴定   总被引:1,自引:0,他引:1  
旨在pET32a(+)原核表达载体中表达金黄色葡萄球菌(Staphylococcus aureus)中的转肽酶分选酶(SrtA)并进行鉴定.以含有pET22-srtA质粒为模板,设计并合成引物,PCR扩增得到SrtA△N24和SrtA△N59基因,经过BamH Ⅰ、Xho Ⅰ酶切,克隆入表达载体pET32a(+)中,构建重组载体pET32a-SrtA△N24及pET32a-SrtA△N59,并转化入大肠杆菌BL21(DE3).经异丙基硫代-β-D-半乳糖苷(IPTG)诱导表达后用SDS-PAGE和Western blotting对表达产物分别进行分析和鉴定.然后对重组质粒在大肠杆菌BL21(DE3)中的表达条件进行了优化.结果显示重组载体pET32a-SrtA△N24和pET32a-SrtA△N59分别表达出相对分子量为约42 kD和37 kD的融合蛋白,经SDS-PAGE和Westem blotting检测显示其分子量与预期的大小相符合.成功构建了重组质粒pET32a-SrtA△N24和pET32a-SrtA△N59,并且在大肠杆菌BL21(DE3)中获得了高效融合表达.  相似文献   

16.
通过气相色谱法(GC)快速分析8种真菌的脂肪酸成分,发现匍枝根霉(Rhizopus stolonifer)具有较高的γ-亚麻酸含量,利用RT-PCR和RACE方法获得了全长为1475bp的匍枝根霉△6-脂肪酸脱氢酶基因的cDNA序列,其中开放阅读框为1380bp,编码459个氨基酸。生物信息学分析所克隆的基因具有△6-脂肪酸脱氢酶的典型结构:N端具有细胞色素b5结构、具有3个保守的组氨酸区序列和跨膜结构;把该基因的开放阅读框序列连接到表达载体pYES2.0上,构建重组表达载体pYRnD6D,并将其转入缺陷型酿酒酵母INVScl中进行表达。GC分析表明,该序列在酵母中获得了表达,表达产物表现出△6-脂肪酸脱氢酶的酶学活性,能将底物亚油酸转化为γ-亚麻酸。新生成的γ-亚麻酸占酵母细胞总脂肪酸的12.25%。  相似文献   

17.
△8途径是合成多不饱和脂肪酸的替代途径,△8-脂肪酸脱氢酶是该途径的关键酶之一.根据已报道的△8-脂肪酸脱氢酶基因设计引物,分别从小眼虫藻基因组DNA和cDNA中扩增得到该基因片段,序列分析表明:结构基因长1 266 bp,编码421个氨基酸;该基因没有内含子,比已经报道的△8-脂肪酸脱氢酶基因长6bp,并且N末端序列也有所不同.利用酿酒酵母的载体pYES2.0构建△8-脂肪酸脱氢酶表达载体pYEFD,并转化到营养缺陷型酿酒酵母菌株INVSc1中,在选择培养基中筛选得到酿酒酵母转化菌株YD8.YD8在合适的培养条件下,添加外源底物二十碳二烯酸和二十碳三烯酸并诱导基因表达.脂肪酸甲酯气相色谱分析表明小眼虫藻△8-脂肪酸脱氢酶基因在酿酒酵母中获得了高效表达,将二十碳二烯酸和二十碳三烯酸分别转化成二高-γ-亚麻酸和二十碳四烯酸,其底物转化率分别达到了31.2%和46.3%.  相似文献   

18.
应用PCR技术,从含有深黄被孢霉△^6-脂肪酸脱氢酶基因的重组粒pTMICI6中,扩增出1.38kb的目的片段,亚克隆到大肠杆菌和酿酒酵 母的穿梭表达载体pYES2.0,在大肠杆菌中筛选到含有目的基因的重组质粒pYMID6, 用酶酸锂方法转化到酿酒酵母的缺陷型菌株INVScl中,在SC-Ura合成培养基中,选择到酵母工程株YMID6,在合适的培养基及培养条件下,加入外源底物亚油酸,经半乳糖诱导后,收集菌体,通过GC-MS对酶母工程株所含的全部脂肪酸进行色谱分析,结果表明,γ-亚麻酸的含量占酵母总脂肪酸的8.69%.  相似文献   

19.
为获得产高γ 亚麻酸的酿酒酵母工程菌株,应用RT PCR技术,从卷枝毛霉中扩增出△6 脂肪酸脱氢酶 基因,亚克隆到大肠杆菌和酿酒酵母的穿梭表达载体pYES2.0,在大肠杆菌中筛选到含有目的基因的重组质粒 pYES412,用醋酸锂方法转化到酿酒酵母缺陷型菌株INVScI中,在SC ura合成培养基中筛选到转化酵母,在合适 的培养基及培养条件下,加入外源底物亚油酸,经半乳糖诱导后,收集菌体,通过气相色谱对转化酵母进行脂肪酸 色谱分析,结果表明:γ 亚麻酸占总脂肪的50.07%。迄今为止,这是国内外△6 脂肪酸脱氢酶基因在酿酒酵母表 达量最高的报道。  相似文献   

20.
目的:构建Hv古细菌SRP19蛋白的表达载体pET23d-HvSRP19并在大肠杆菌中表达后进行纯化和研究其生物学活性,为研究SRP循环的分子机制奠定基础。方法:用体外合成的重组DNA技术,先合成具有重叠碱基的10个寡核苷酸短序列,通过拼接,获得Hv SRP19基因全长DNA后,克隆到pET23d载体上。重组质粒在大肠杆菌BL21(DE3)pLysS中的大量表达产物经Q-Sepharose离子交换层析柱纯化后再用蔗糖密度梯度超速离心法分析其生物学活性。结果:正确构建了pET23d-Hv SRP19表达载体,并在大肠杆菌BL21(DE3)pLysS中获得良好的表达;成功地纯化了表达产物,纯度达95%;证明了具有SRP19蛋白的生物学活性,能够与Hv SRP RNA相互作用形成SRP19-SRP RNA的复合物。结论:纯化的Hv SRP19蛋白与Hv SRP RNA相互作用所形成的复合物,被认为是启动SRP颗粒形成和功能发挥的开始。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号