首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

2.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):128-134
Phytochrome in the far-red light absorbing form (Pfr) was observed to disappear in vivo more rapidly from the non-cation-requiring pelletable phytochrome population than from the supernantant phytochrome population of oat seedlings given an increasing dark incubation after red irradiation. The amount of pelletable phytochrome in the red light absorbing form (Pr) remained relatively stable while supernatant Pr was lost. These observations indicated that supernant Pfr was subject to loss during the incubation, while pelletable Pfr was subject to both dark reversion and loss.During the incubation, the ability of far-red irradiation to reverse the red-induced increase in phytochrome pelletability was lost, with kinetics similar to those of the loss of pelletable Pfr.Far-red reversibility of the red-induced increase in coleoptile elongation correlated with the change intotal Pfr in both supernatant and pelletable phytochrome populations, but with the change in the ratio of Pfr to total phytochrome only in the pelletable phytochrome population.The possible significance of these results is discussed with reference to the action of phytochrome in the photocontrol of physiological growth responses.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the red absorbing form - Ptot total phytochrome  相似文献   

3.
A polycation-dependent protein kinase was found to be associated with purified phytochrome preparations from etiolated Avena seedlings. This kinase and three mammalian protein kinases, the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase, and a Ca2+-activated phospholipid-dependent protein kinase, were used to probe light-induced conformational changes in 124-kilodalton Avena phytochrome in vitro. The red absorbing form of phytochrome (Pr) was found to be a substrate for all four protein kinases. Although the far-red absorbing form of phytochrome (Pfr) was as good a substrate as Pr with the cAMP-dependent protein kinase, the Pfr form was poorly phosphorylated by the other three protein kinases. Serine is the major amino acid residue phosphorylated on phytochrome regardless of the form of phytochrome used as substrate. Peptide mapping revealed that the sites of phosphorylation catalyzed by the cAMP-dependent protein kinase differ for Pr and Pfr forms of phytochrome. For the Pr form, the preferred site(s) of phosphorylation was near the amino terminus of the 124-kilodalton subunit. Upon photo-conversion to Pfr, this site can no longer be phosphorylated easily and a new phosphorylation site in the COOH-terminal nonchromophore domain of the molecule becomes accessible to the cAMP-dependent protein kinase. These studies of the phosphorylation of phytochrome provide a new means to study the effect of light absorption by phytochrome on the molecular conformation of the protein. The potential physiological implications of differential phosphorylation of Pr and Pfr await elucidation.  相似文献   

4.
The loading of quin2 into oat protoplasts was carried out in an incubation medium (0.6 M sorbitol, 1 mM CaCl2, 5 mM Mes, 5 mM Tris, 0.05% BSA, 1 mM KCl, 1 mM MgSO4 (pH 6.8)), in which we found the best viability of the protoplast and the highest membrane permeability of quin2/AM, compared with the results obtained from any other incubation medium we had tried to use. 50 microns of quin2/AM was added in the suspension medium containing 5 x 10(5)/ml of oat protoplasts, and incubation at 4 degrees C was performed for 24 h. From atomic absorption data, we confirmed that quin2 loading was 1.78 mmol per liter of cells. Red-light (660 nm) irradiation for 5 min caused an increase of the cytosolic Ca2+ concentration from 30 to 193 nM. On the other hand, a subsequent irradiation with far-red light (730 nm) for 5 min decreased it by about 48 nM. Even when the extracellular Ca2+ was completely chelated with 1 mM EDTA, red light increased the cytosolic Ca2+ concentration by about 51 nM and far-red light decreased it to 3 nM. These results imply that the Pfr form of phytochrome functions not only in the process of influx of Ca2+, but also in the mobilization process of Ca2+ from the intracellular Ca2+ pools. The fact that the Pr form of phytochrome lowers the cytosolic Ca2+ concentration is also presented in this report.  相似文献   

5.
V. Speth  V. Otto  E. Schäfer 《Planta》1987,171(3):332-338
The intracellular localisation of phytochrome and ubiquitin in irradiated oat coleoptiles was analysed by electron microscopy. We applied indirect immunolabeling with polyclonal antibodies against phytochrome from etiolated oat seedlings or polyclonal antibodies against ubiquitin from rabbit reticulocytes, together with a goldcoupled second antibody, on serial ultrathin sections of resin-embedded material. Immediately after a 5-min pulse of red light-converting phytochrome from the red-absorbing (Pr) to the far-redabsorbing (Pfr) form-the label for phytochrome was found to be sequestered in electron-dense areas. For up to 2 h after irradiation, the size of these areas increased with increasing dark periods. The ubiquitin label was found in the same electrondense areas only after a dark period of 30 min. A 5 min pulse of far-red light, which reverts Pfr to Pr, given immediately after the red light did not cause the electron-dense structures to disappear; moreover, they contained the phytochrome label immediately after the far-red pulse. In contrast, after the reverting far-red light pulse, ubiquitin could only be visualised in the electron-dense areas after prolonged dark periods (i.e. 60 min). The relevance of these data to light-induced phytochrome pelletability and to the destruction of both Pr and Pfr is discussed.Abbreviations FR far-red light; Pfr - Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - R red light  相似文献   

6.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

7.
The dynamic behavior of phytochrome A (phyA) in seedlings of the model plant Arabidopsis was examined by in vivo spectroscopy and by western and northern blotting. Rapid accumulation of phyA was observed, reaching a steady state after 3 d. Both red and far-red light initiated a rapid destruction of the far-red-light-absorbing form of phytochrome (Pfr); the apparent half-life was only 4-fold longer in far-red than in red light. Furthermore, the Pfr-induced destruction of the red-light-absorbing form of phytochrome (Pr) of phyA occurred in darkness with a rate identical to that of Pfr destruction. A 2-fold decrease in mRNA abundance was observed after irradiation, irrespective of the applied light quality. However, reaccumulation occurred rapidly after far-red but slowly after red irradiation, indicating different modes of regulation of phytochrome expression after light-dark transitions depending on the light quality of the preceding irradiation. The wavelength dependency of the destruction rates was distinct from that of mustard, a close relative of Arabidopsis, and was explained on the basis of Pfr-induced Pr destruction and a simple kinetic two-step model. No dark reversion was detectable in the destruction kinetics after a red pulse. From these data we conclude that Arabidopsis phyA differs significantly in several aspects from other dicot phytochromes.  相似文献   

8.
Modulation of a mitochondrial function by oat phytochrome in vitro   总被引:3,自引:2,他引:1       下载免费PDF全文
Cedel TE 《Plant physiology》1980,66(4):704-709
Previous data in the literature have indicated that phytochrome could alter the rate of reduction of exogenously added NADP by a pea mitochondrial preparation in vitro. These results could not be duplicated using a mitochondrial preparation isolated from etiolated oat seedlings. Further experimentation demonstrated that the addition of Pr to the preparation, in combination with a far red light illumination, could significantly reduce the rate of oxidation of NADH by the external dehydrogenases of oat mitochondria. This response was characterized by a 15% decrease in reaction velocity at saturating substrate concentrations and a 2-fold increase in apparent Km as compared to values obtained after Pfr plus red light treatment. The response was photoreversible, the rate of oxidation of exogenous NADH being determined by the last light illumination given to the mitochondrial preparation. The interaction between phytochrome and the mitochondria was apparently occurring at the level of the inner mitochondrial membrane. A requirement for these results was that the mitochondria be isolated from plants that were illuminated with white or red light before extraction; mitochondria from unirradiated plants showed no dehydrogenase response to treatments with phytochrome plus actinic light.  相似文献   

9.
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.Abbreviations FR far-red light - WL white light - PAR photosynthetically active radiation - Pfr far-red light absorbing form of phytochrome - Pr red light absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr) - Pfr/Pfr+Pr - SAN 9789 4-chloro-5-(methylamino) 2(,, trifluoro-m tolyl)-3(2H)-pyridazinone  相似文献   

10.
Abstract The ‘end-of-day’ phytochrome control of internode growth was characterized in Sinapis alba, seedlings previously grown under continuous white light for 13 d. The transition from white light to darkness caused a reduction in internode extension rate with a lag of less than 10 min. Following this, extension rate remained almost constant for at least 48 h. i.e. ‘re-etiolation’ was not noticed. The phytochorme controlling the growth processes was stable in the Pfr form. The growth rate of plants receiving a red light pulse, and the growth promotion caused by a far-red light pulse, increased with increasing fluence rate of the previous white light treatment. In far-red treated plants a first growth rate acceleration peaked at 20–30 min after the end of white light, followed by a transient deceleration which led to a growth rate minimum at 40–60 min, followed by a final growth rate recovery yielding a more-or-less steady elevated rate. Pulses establishing different Pfr/P modified the extent, but not the early kinetics, of the growth response. The relative promotion of growth caused by low Pfr/P was limited by darkness as follows: (a), The growth promotion caused by far-red directed to the internode alone was transient. (b), The promotion caused by a reduction of Pfr/P in the whole shoot persisted in darkness for at least 48 h and also persisted if, after a 3–9 h dark period, the plants were returned to continuous white light. In darkness, however, the magnitude of this growth rate promotion decreased with time, particularly when the previous white light fluence rate was low, or the pulse preceding darkness provided the lowest Pfr/P. (c), When compared over the same period in darkness, growth rate was higher in those seedlings in which Pfr/P was reduced during the continuous white light pretreatment than in those ones in which the Pfr/P was only reduced immediately before darkness. It is proposed that in the natural environment, red/far-red signals could be more effective when provided during daytime than at the end of the photoperiod, as both the background growth rate and the relative promotion caused by low Pfr/P are reduced by darkness.  相似文献   

11.
Environmental light information such as quality, intensity, and duration in red (approximately 660 nm) and far-red (approximately 730 nm) wavelengths is perceived by phytochrome photoreceptors in plants, critically influencing almost all developmental strategies from germination to flowering. Phytochromes interconvert between red light-absorbing Pr and biologically functional far-red light-absorbing Pfr forms. To ensure optimal photoresponses in plants, the flux of light signal from Pfr-phytochromes should be tightly controlled. Phytochromes are phosphorylated at specific serine residues. We found that a type 5 protein phosphatase (PAPP5) specifically dephosphorylates biologically active Pfr-phytochromes and enhances phytochrome-mediated photoresponses. Depending on the specific serine residues dephosphorylated by PAPP5, phytochrome stability and affinity for a downstream signal transducer, NDPK2, were enhanced. Thus, phytochrome photoreceptors have developed an elaborate biochemical tuning mechanism for modulating the flux of light signal, employing variable phosphorylation states controlled by phosphorylation and PAPP5-mediated dephosphorylation as a mean to control phytochrome stability and affinity for downstream transducers.  相似文献   

12.
M. T. Black  P. Lee  P. Horton 《Planta》1986,167(3):330-336
The kinetics of the intracellular redistribution of phytochrome (sequestering) in Avena sativa L. coleoptiles following a brief, saturating actinic pulse of red (R) light have been determined. Immunocytochemical labelling of phytochrome with monoclonal antibodies showed that at 22°C sequestering can occur within 1–2 s from the onset of R irradiation and is dependent upon the continued presence of the far-red-absorbing form of phytochrome (Pfr). The initial rate, but not the final extent, of sequestering is reduced by lowering the temperature of the tissue to 1°C. Sequestering at 22°C appears to involve two distinct stages: (1) a rapid association of Pfr with putative binding sites initiates the sequestered condition, following which (2) these sites of sequestered phytochrome appear to aggregate. Neither of these two processes was affected by the cytoskeletal inhibitors colchicine or cytochalasin B. Phytochrome sequestering therefore resembles R-light-induced phytochrome pelletability with respect to kinetics, temperature sensitivity, and dependence upon the continued presence of Pfr in the cell.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DIC differential interference contrast - FR far-red - Ig immunoglobulin - Pfr, Pr far-red-absorbing and red-absorbing form of phytochrome, respectively - R red  相似文献   

13.
The plant photoreceptor chromoprotein, phytochrome, is rapidly degraded in vivo after photoconversion from a stable red light-absorbing form (Pr) to a far-red light-absorbing form (Pfr). Previously, we demonstrated that during Pfr degradation in etiolated oat seedlings, ubiquitin-phytochrome conjugates, (Ub-P), appear and disappear suggesting that phytochrome is degraded via a ubiquitin-dependent proteolytic pathway (Shanklin, J., Jabben, M., and Vierstra, R. D. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 359-363). Here, we provide additional kinetic and localization data consistent with this hypothesis by exploiting the unique ability to photoregulate phytochrome degradation in vivo. An assay for the quantitation of Ub-P was developed involving immunoprecipitation of total conjugates with anti-ubiquitin antibodies, followed by the detection of Ub-P with anti-phytochrome antibodies. Using this immunoassay, we found that Ub-P will accumulate to approximately 5% of initial phytochrome during Pfr degradation induced by a saturating red light pulse. Reducing the amount of Pfr produced initially by attenuating the red light pulse, lowered the amount of phytochrome degraded in the following dark period and concomitantly reduced the maximal accumulation of Ub-P. Continuous far-red irradiations that maintained only 4% of phytochrome as Pfr induced rapid phytochrome degradation similar to that induced by a red light pulse converting 86% of Pr to Pfr. The appearance and disappearance of Ub-P were similar for each irradiation indicating that Ub-P accumulation is independent of the level of Pfr provided rapid phytochrome degradation is maintained. Pulse-chase studies employing continuous far-red light followed by darkness showed that Ub-P are continuously synthesized during phytochrome degradation and rapidly disappear once degradation ceases. Ub-P also accumulated during "cycled Pr" degradation induced by the transformation of Pr to Pfr and back to Pr. The commitment to degrade cycled Pr and form Ub-P occurred within seconds after Pfr formation making the cause(s) underlying this phenomenon one of the fastest phytochrome reactions known. Within seconds after Pfr formation, a majority of phytochrome is also known to aggregate in vivo (previously defined as sequestered or pelletable), with aggregated phytochrome preferentially lost during phytochrome degradation. In vitro analysis of aggregated phytochrome indicated that they contain most of the Ub-P. Moreover, the appearance of Ub-P in the aggregated and soluble fractions correlated with the time that phytochrome disappeared from that fraction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Unilateral irradiation of maize (Zea mays L.) seedlings results in a fluence-rate gradient, and hence below saturation, a gradient of the far-red-absorbing form of phytochrome (Pfr). The Pfr-gradients established by blue, red and far-red light were spectrophotometrically measured in the mesocotyl. Based on these Pfr-gradients and the fluence-response curves of phytochrome photoconversion the fluence-rate gradients were calculated. The fluence-rate gradient in the blue (460 nm) was steeper than that in the red (665 nm), which in turn was steeper than that in the far-red light (725 nm). The fluence-rate ratios front to rear were 1:0.06 (460 nm), 1:0.2 (665 nm), and 1:0.33 (725 nm). The assumption that phytochrome-mediated phototropism of maize mesocotyls is caused by local phytochrome-mediated growth inhibition was tested in the following manner. Firstly, the Pfr response curve for growth inhibition was calculated; these calculations were based on measurements of Pfr-gradients and data from red-light-induced phototropism. Secondly, the Pfr response curve for growth inhibition was used as a basis for calculating fluence-response curves for blue-and far-red-light-induced phototropism. Finally, these calculated results were compared with experimental data. It was concluded that the threshold for phytochrome-mediated phototropism of maize mesocotyls reflects the apparent photoconversion cross section of phytochrome whereas the maximal inducable curvature depends on the steepness of the light (Pfr) gradient across the mesocotyl.Abbreviations Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Fr far-red light  相似文献   

15.
J. E. Hughes  E. Wagner 《Planta》1987,172(1):131-138
The effects of far-red light given against a background of white light on the stem-extension kinetics of three-week-old, light-grown Chenopodium album seedlings were investigated. Under white light alone, the stems (cotyledon-to-apex) extended almost exactly logarithmically with time. Under these conditions the increase in log [stem length in mm] per hour was approx. 3.7·10-3, equivalent to about 1% per h during both skoto-and photoperiods. Supplementary far-red given throughout each photoperiod massively stimulated extension. The calculated logarithmic extension rate, however, slowly returned to that of the controls, following an initial large increase. This is predicted by a model in which far-red light linearly increases the extension rate of individual internodes which arise at an exponentially increasing rate. The behaviour of the model is also consistent with critical experiments in which far-red was given as a pre-treatment or transiently, as well as with other published data. Far-red stimulation of logarithmic extension rate in successive photoperiods was closely and linearly correlated with calculated phytochrome photoequilibrium. Daily short periods of supplementary far-red were especially potent in accelerating extension; the plants seemed least responsive at the end of the photoperiod.Abbreviations FR supplementary far-red light - I stem length (mm) - LSER logarithmic stem extension rate - Pfr far-red absorbing form of phytochrome - R:FR red:far-red fluence rate ratio - WL white light - c calculated phytochrome photoequilibrium  相似文献   

16.
A. Ritter  E. Wagner  M. G. Holmes 《Planta》1981,153(6):556-560
The spectral control of hypocotyl elongation in light-grown Chenopodium rubrum L. seedlings has been studied. The results showed that although the seedlings responded to changes in the quantity of combined red and far-red radiation, they were also very sensitive to changes in the quantity of blue radiation reaching the plant. Altering the proportion of red: far-red radiation in broad waveband white light caused marked differences in hypocotyl extension. Comparison of the responses of green and chlorophyll-free seedlings indicated no qualitative difference in the response to any of the light sources used, although photosynthetically incompetent plants were more sensitive to all wavelengths. Blue light was found to act primarily of a photoreceptor which is different from phytochrome. It is concluded that hypocotyl extension rate in vegetation shade is photoregulated by the quantity of blue light and the proportion of red: far-red radiation. In neutral shade, such as that caused by stones or overlying soil, hypocotyl extension appears to be regulated primarily by the quantity of light in the blue waveband and secondarily by the quantity of light in the red and far-red wavebands.Abbreviations B blue - FR far-red - k 1, k 2 rate constants for photoconverison of Pr to Pfr and Pfr to Pr, respective - k 1/k 1 +k 2= phytochrome photoequilibrium - k 1 +k 2= phytochrome cycling rate - Pr=R absorbing form of phytochrome - Pfr=FR absorbing form of phytochrome - Ptot Pr+Pfr - PAR photosynthetically active radiation = 400–700 nm - R red - WL white light  相似文献   

17.
The regulation of endogenous levels of ascorbic acid in soybean by far-red absorbing form of phytochrome (Pfr) and by cryptic red light signal (CRS) was studied. Cryptic red light signal is produced by red light pre-irradiation of a photoreceptor other than far-red absorbing form of phytochrome (Pfr) and CRS amplifies the action of phytochrome. The endogenous level of ascorbic acid levels enhanced by phytochrome was amplified by CRS. The lifetime of CRS was from 0 to 2 h and the peak of enhancement of ascorbic acid due to CRS was between 16 to 24 h of dark incubation after the end of the treatment. CRS was found to be ineffective on UV-B enhanced endogenous levels of ascorbic acid.Key words: ascorbic acid, cryptic red light signal, glycine max, phytochrome, ultraviolet-BThe phytochrome mediated morphogenesis involves the conversion of Pr [red absorbing form] to Pfr [far-red absorbing form] and the magnitude of the response is dependent on Pfr/P tot ratio established at the end of the irradiation.1 In broom Sorghum anthocyanin synthesis induced by red light [R1] is reversible with far-red light. But a second red pulse [R2] given after the reversal resulted in increased anthocyanin production compared to the first pulse [R1]. When the red pulse was repeatedly given after every reversal with far-red, the anthocyanin production increased proportionately to the number of previously given pulses.2 Thus red pre-treatment induced a change in the cellular physiological state or change in content of a relevant substance[s] which is designated as Cryptic Red Light Signal [CRS] associated with red signal transduction.2 CRS was first characterized in detail in Broom Sorghum as Pfr amplifying signal produced by red pre-irradiation. CRS is inactive in the absence of Pfr but enhances the action of Pfr. CRS escapes reversal when the plants are exposed to far-red and is probably produced by a different species of phytochrome, distinct from the conventional reversible phytochrome.3We have investigated whether CRS influences other phytochrome regulated processes in plants in addition to anthocyanin synthesis. We chose another process, the synthesis of endogenous ascorbic acid, which is also regulated by conventional phytochrome.4 In soybean, the endogenous level of ascorbic acid is enhanced by conventional far-red reversible form of phytochrome. In addition, an independent UV-B photoreceptor [non reversible with far-red light] also enhances the endogenous synthesis of ascorbic acid in soybean. By using repeated pulses of red light, we have demonstrated that the Cryptic Red Signal is operative in soybean also and it amplifies the red light induced enhancement in the level of ascorbic acid. That CRS is active only in the presence of Pfr is demonstrated by the fact that pre-irradiation with red light is ineffective in amplifying UV-B induced enhancement of ascorbic acid levels. A similar observation on UV-B induced anthocyanin synthesis has been made in Broom Sorghum.2 A separate UV-B photoreceptor independent of phytochrome operates in the plants.5 Although CRS is presumably produced by pre-irradiation with red light, it does not enhance UV-B induced anthocyanin synthesis or ascorbic acid synthesis in the absence of formation of Pfr by the second red pulse.The life-time of CRS was determined as 6 h in 20°C and 3 h in 24°C grown seedlings of Broom Sorghum with reference to anthocyanin synthesis.2 The life-time of CRS determined in soybean seedlings grown at 25°C was upto 1 h.6 Since growing seedlings at a low temperature enhanced the effectiveness of CRS in Broom Sorghum, it was concluded that low temperature may either extend the lifetime of CRS or generate higher amount of CRS.2 Although the exact nature of CRS is yet to be analyzed, work in our laboratory has established the universal nature of this signal and evidences have been obtained for CRS effect in promoting red light induced hypocotyls inhibition in Cucumber seedlings and also red light induced synthesis of betacyanins in Amaranthus seedlings (submitted for publication).  相似文献   

18.
The red-light(R)-absorbing form of phytochrome (Pr) was detected spectrophotometrically in a 20,000 g particulate fraction prepared from a 1,000 g supernatant fraction from epicotyl tissue of pea (Pisum sativum L.) seedlings grown in the dark and only briefly exposed to dim green light. The difference spectrum of phytochrome in this fraction was essentially the same as that of soluble phytochrome from the same tissue. When the non-irradiated 20,000 g particulate fraction was incubated in the dark at 25° C, an absorbance change (decrease) of Pr after actinic red irradiation was found only in the far-red (FR) region. When the 20,000 g particulate fraction was irradiated with R and then incubated in the dark, the FR-absorbing form of phytochrome (Pfr) disappeared spectrally at a rate about half that in the soluble fraction, and the difference spectrum of the Pr which became detectable after dark incubation of the 20,000 g particulate fraction was markedly distorted. In contrast, Pfr in a 20,000 g particulate fraction prepared from tissues irradiated with R did not change optically during dark incubation at 25° C for 60 min, while Pfr in the soluble fraction from the same tissue disappeared in the dark. No dissociation of either Pr or Pfr from the 20,000 g particulate fraction was indicated during a 60-min dark incubation at 25° C, but Pfr in a 20,000 g particulate fraction prepared in vitro from R-irradiated 1,000 g supernatant fraction in the presence of CaCl2 disappeared spectrally and the difference spectrum of Pr in the 20,000 g particulate fraction became quite distorted during the dark incubation.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - FR far-red light - FR1 first actinic far-red light - FR2 second actinic far-red light - R red light - R1 first actinic red light - 1kS 1,000 g supernatant fraction - 20kS 20,000 g supernatant fraction - 20kP 20,000 g particulate fraction  相似文献   

19.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

20.
A series of seven carboxy-terminal deletion mutants of oat phytochrome A were stably expressed in transgenic tobacco to localize phytochrome domains involved in chromophore attachment, spectral integrity, photoreversibility between the red light (Pr)- and far-red light (Pfr)-absorbing forms, dimerization, and biological activity. Amino acids necessary for chromophore attachment in vivo were localized to the amino-terminal 398 residues because mutant proteins this small had covalently bound chromophore. Deletion mutants from the carboxy terminus to residue 653 were spectrally indistinguishable from the full-length chromoprotein. In contrast, further truncation to residue 399 resulted in a chromoprotein with a bleached Pfr absorbance spectrum, Pr and Pfr absorbance maxima shifted toward shorter wavelengths, and reduced Pfr to Pr phototransformation efficiency. Thus, residues between 399 ad 652 are required for spectral integrity but are not essential for chromophore attachment. The sequence(s) between residues 919 and 1093 appears to be necessary for dimerization. Carboxy-terminal mutants containing this region behaved as dimers under nondenaturing conditions in vitro, whereas truncations without this region behaved as monomers. None of the plants expressing high levels of deletion mutants lacking the 35 carboxy-terminal amino acids displayed the light-exaggerated phenotype characteristic of plants expressing biologically active phytochrome A, even when the truncated phytochromes were expressed at levels 6- to 15-fold greater than that effective for the full-length chromoprotein. Collectively, these data show that the phytochrome protein contains several separable carboxy-terminal domains required for structure/function and identify a domain within 35 residues of the carboxy terminus that is critical for the biological activity of the photoreceptor in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号